Homework 13

Due: December 8 at 11:59 PM. Submit on Canvas.

Problem 1 (Newton's method): Newton's method is a classic numerical technique for finding the roots of a known function $g(x)$, i.e. the points x_{*} where $g\left(x_{*}\right)=0$.

A: The algorithm goes like this: given a point x_{n} which is a proposed root, find a "better" root x_{n+1} by drawing a locally tangent straight line to the curve $g(x)$ at the point $\left(x_{n}, g\left(x_{n}\right)\right)$, and finding the point x_{n+1} where that line intersects the x-axis. Show that this method leads to

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)} . \tag{1}
\end{equation*}
$$

B: Suppose (without loss of generality) that for small x,

$$
\begin{equation*}
g(x) \approx a x+b x^{2}+\cdots \tag{2}
\end{equation*}
$$

Namely, $g(0)=0$. Assume that $b \neq 0$.
B1. Follow Lecture 37 and describe the dynamics of the map (1) for (sufficiently) small x_{n}. Show that if $a \neq 0$, the map will converge to the fixed point very fast - quantify exactly how fast the convergence will occur.
B2. What happens if $a=0$? Compare the two behaviors to what we saw in Lecture 37 .
C: The result of B might make you think that the Newton's method map should always converge efficiently. Show that this is not the case, however; find a differentiable function $g(x)$ for which the map (1) will actually exhibit chaotic dynamics.

Problem 2: Consider the "curve" S, formed by the limiting process shown in Figure 1.

1. Show that if $\alpha<1 / 3, S$ will not self-intersect.
2. Taking $\alpha<1 / 3$, show that the box dimension of S is

$$
\begin{equation*}
d=\max \left[1, \frac{\log 5}{\log \left(\alpha^{-1}\right)}\right] . \tag{3}
\end{equation*}
$$

Figure 1: Start with S_{0}, a square of side length 1. At step n, take all corners and "add" the outer boundary of a square of length α^{n}, centered at the original corner, to make $S_{n} . S$ is the limiting shape formed by this process.
3. Explain how it is possible that S appears "fractal" for any $\alpha>0$, and yet $d=1$ for $\alpha<1 / 5$.

Problem 3 (Intermittency): Consider the logistic map from Lecture 36 with $r=3.835$.

D: Following Lecture 38, let us develop a renormalization group theory for intermittency. Recall that we
look for a function $g(x)$ obeying

$$
\begin{equation*}
\alpha^{-1} g(\alpha x)=g(g(x)) \tag{5}
\end{equation*}
$$

D1. Argue that the universal function $g(x)$ that captures the intermittency transition should obey
boundary conditions $g(0)=0$ and $g^{\prime}(0)=1 .^{2}$
D2. Show that the following ansatz solves (5) with $\alpha=2$: for any constant c,

$$
\begin{equation*}
g(x)=\frac{x}{1+c x} . \tag{6}
\end{equation*}
$$

A: Use (if you want) the Mathematica package provided with Lecture 36. Simulate the dynamics for generic initial conditions and argue that there is a stable period-3 cycle.

B: Using a combination of analytics and numerics, we can explain this.
B1. First, explain analytically that a stable period-3 cycle will require (at least) 3 stable fixed points of the map $f^{[3]}(x)=f(f(f(x)))$, with f the logistic map. What is the stability condition at these fixed points?
B2. Numerically confirm that the logistic map has a stable period-3 cycle at $r=3.835$.
C: It turns out that at $r=3.828$ the stable period- 3 cycle no longer exists.
C1. Confirm this numerically, using a similar method to B2.
C2. Locally, near a certain value of \hat{x} (what does it correspond to? ${ }^{1}$), and near these values of r, the repeated logistic map locally looks like

$$
\begin{equation*}
f^{[3]}(x) \approx a\left(r-r_{\mathrm{c}}\right)+x-b(x-\hat{x})^{2} \tag{4}
\end{equation*}
$$

where r_{c} is the critical value just above which a stable period- 3 cycle exists, and $a, b>0$ are constants you don't need to determine. Use a cobweb diagram to argue that the logistic dynamics can get trapped near the period-3 cycle for a long time, when r is just smaller than r_{c}.
C3. Numerically confirm by simulating the logistic map that this trapping behavior occurs. This is called intermittency, and it is responsible for the bursts of seemingly periodic behavior in chaotic dynamics that we saw in, e.g., Lecture 34.

E: The function $g(x)$ found in (6) describes the universal behavior of a map exactly at the tangent bifurcation. However, as in C, let us consider perturbing the map by a small constant, such that we eventually pass through the region $x=0$. This can be done by considering the map

$$
\begin{equation*}
g_{r}(x)=g(x)-r, \tag{7}
\end{equation*}
$$

E1. Treat r as a very small perturbation. Argue that $g_{r}\left(g_{r}(x)\right) \approx \alpha^{-1} g_{r^{\prime}}(\alpha x)-$ what is r^{\prime} ?
E2. Estimate the scaling of the number of steps $N(r) \sim r^{-\beta}$ it takes for the dynamics to pass through the intermittent region near an avoided tangent bifurcation. Namely, what is the value of β ?

[^0]
[^0]: ${ }^{1}$ Hint: Compare the answers to B2 and C1.
 ${ }^{2}$ Hint: Think about the "normal form" that we found above as $r \rightarrow 0$!

