Homework 13

Due: December 8 at 11:59 PM. Submit on Canvas.

Problem 1 (Newton's method): Newton's method is a classic numerical technique for finding the roots of a known function g(x), i.e. the points x_* where $g(x_*) = 0$.

10 A: The algorithm goes like this: given a point x_n which is a proposed root, find a "better" root x_{n+1} by drawing a locally tangent straight line to the curve g(x) at the point $(x_n, g(x_n))$, and finding the point x_{n+1} where that line intersects the x-axis. Show that this method leads to

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}.$$
(1)

20 **B:** Suppose (without loss of generality) that for small x,

$$g(x) \approx ax + bx^2 + \cdots . \tag{2}$$

Namely, g(0) = 0. Assume that $b \neq 0$.

- B1. Follow Lecture 37 and describe the dynamics of the map (1) for (sufficiently) small x_n . Show that if $a \neq 0$, the map will converge to the fixed point *very fast* quantify exactly how fast the convergence will occur.
- B2. What happens if a = 0? Compare the two behaviors to what we saw in Lecture 37.
- 10 C: The result of B might make you think that the Newton's method map should always converge efficiently. Show that this is not the case, however; find a differentiable function g(x) for which the map (1) will actually exhibit chaotic dynamics.
- 20 **Problem 2:** Consider the "curve" S, formed by the limiting process shown in Figure 1.
 - 1. Show that if $\alpha < 1/3$, S will not self-intersect.
 - 2. Taking $\alpha < 1/3$, show that the box dimension of S is

$$d = \max\left[1, \frac{\log 5}{\log\left(\alpha^{-1}\right)}\right].$$
(3)

Figure 1: Start with S_0 , a square of side length 1. At step n, take all corners and "add" the outer boundary of a square of length α^n , centered at the original corner, to make S_n . S is the limiting shape formed by this process.

3. Explain how it is possible that S appears "fractal" for any $\alpha > 0$, and yet d = 1 for $\alpha < 1/5$.

Problem 3 (Intermittency): Consider the logistic map from Lecture 36 with r = 3.835.

- 10 A: Use (if you want) the Mathematica package provided with Lecture 36. Simulate the dynamics for generic initial conditions and argue that there is a stable period-3 cycle.
- 15 B: Using a combination of analytics and numerics, we can explain this.
 - B1. First, explain analytically that a stable period-3 cycle will require (at least) 3 stable fixed points of the map $f^{[3]}(x) = f(f(f(x)))$, with f the logistic map. What is the stability condition at these fixed points?
 - B2. Numerically confirm that the logistic map has a stable period-3 cycle at r = 3.835.
- 15 C: It turns out that at r = 3.828 the stable period-3 cycle no longer exists.
 - C1. Confirm this numerically, using a similar method to B2.
 - C2. Locally, near a certain value of \hat{x} (what does it correspond to?¹), and near these values of r, the repeated logistic map locally looks like

$$f^{[3]}(x) \approx a(r - r_{\rm c}) + x - b(x - \hat{x})^2$$
(4)

where r_c is the critical value just above which a stable period-3 cycle exists, and a, b > 0 are constants you don't need to determine. Use a cobweb diagram to argue that the logistic dynamics can get trapped near the period-3 cycle for a long time, when r is *just smaller* than r_c .

- C3. Numerically confirm by simulating the logistic map that this trapping behavior occurs. This is called **intermittency**, and it is responsible for the bursts of seemingly periodic behavior in chaotic dynamics that we saw in, e.g., Lecture 34.
- 10 D: Following Lecture 38, let us develop a renormalization group theory for intermittency. Recall that we look for a function g(x) obeying

$$\alpha^{-1}g(\alpha x) = g(g(x)). \tag{5}$$

- D1. Argue that the universal function g(x) that captures the intermittency transition should obey boundary conditions g(0) = 0 and g'(0) = 1.²
- D2. Show that the following ansatz solves (5) with $\alpha = 2$: for any constant c,

$$g(x) = \frac{x}{1+cx}.$$
(6)

10 E: The function g(x) found in (6) describes the universal behavior of a map *exactly* at the tangent bifurcation. However, as in C, let us consider perturbing the map by a small constant, such that we eventually pass through the region x = 0. This can be done by considering the map

$$g_r(x) = g(x) - r, (7)$$

- E1. Treat r as a very small perturbation. Argue that $g_r(g_r(x)) \approx \alpha^{-1} g_{r'}(\alpha x)$ what is r'?
- E2. Estimate the scaling of the number of steps $N(r) \sim r^{-\beta}$ it takes for the dynamics to pass through the intermittent region near an avoided tangent bifurcation. Namely, what is the value of β ?

¹*Hint:* Compare the answers to B2 and C1.

²*Hint:* Think about the "normal form" that we found above as $r \to 0$!