
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 3

Due: September 22 at 11:59 PM. Submit on Canvas.

Problem 1 (Massless relativistic particles):25 In Lecture 6, we saw that the Lagrangian for a relativistic
particle was proportional to mass m; however, there are also massless particles such as photons, and in
principle a massless scalar particle could (in theory) also exist. In this problem we will explain how to
build a Lagrangian for a massless particle.

1. Show that the equations of motion for the following Lagrangian:

L

(
xµ,

dxµ

dλ
, η

)
=

1

η

dxµ

dλ

dxµ
dλ
− ηm2, (1)

reproduce the Euler-Lagrange equation for xµ for the theory described in Lecture 6.

2. Using (1), we can take the limit m → 0 safely. Interpret the resulting Lagrangian. Does it make
physical sense?

3. How should η transform under the reparameterization symmetry λ → f(λ), such that the action in
terms of η and xµ remains invariant under reparameterization?

Problem 2: Consider a charged relativistic particle of charge q and mass m, placed in a uniform electric
field of strength E pointing in the x-direction. There are no magnetic fields.

A:15 Using the results of Lecture 7, show that we can write down a Lagrangian for this system:

S =

∫
dλ

[
−m

√
−dxµ

dλ

dxµ

dλ
− qEtdx

dλ

]
. (2)

B:25 Some combination of the Lorentz transformations (rotations or boosts), together with spacetime trans-
lations, represent continuous symmetries of this problem.

B1. Show that there are 6 continuous symmetries in this system.1

B2. Use these symmetries, together with Noether’s Theorem, to deduce the most general possible
trajectory of the charged particle as a function of time.2

Problem 3 (Roller coaster): In this problem we will use Lagrangian mechanics to understand the design
principles behind roller coasters. Assume for simplicity that the roller coaster behaves as a non-relativistic
point particle of mass m constrained to move in the xy-plane along the track y = h(x). The acceleration
due to gravity has constant magnitude g and points in the −y direction.

1Hint: There are 10 continuous symmetries total between spacetime translations and Lorentz transformations; if you can’t
immediately argue which 6 are symmetries, perhaps first find which 4 are not symmetries, and then check that whatever is
left is in fact a symmetry.

2If you obtain formulas for the trajectory that depend on integrals over known functions that you can’t evaluate analyti-
cally, you can express your answer in that form and get full credit.
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A:15 Let us first consider a solution without Lagrange multipliers.

A1. Explain why (in the absence of the constraint) the Lagrangian for the particle motion is

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy. (3)

You do not need to use effective theory arguments if you don’t want to in this problem.

A2. Argue that you can set m = 1 without modifying the conclusions (but this will reduce some
clutter in the calculation).

A3. Plug in the constraint y = h(x) directly into L given in (3). Obtain a modified L(x, ẋ), and use
the Euler-Lagrange equations to deduce the equation of motion for ẋ.

B:20 Now, we use Lagrange multipliers.

B1. Add a suitable Lagrange multiplier to (3) that enforces the constraint y = h(x).

B2. What are the Euler-Lagrange equations for all degrees of freedom in the problem?

B3. Show how you can suitably combine these equations to obtain the same result as in A3.

B4. Argue that there is at least one benefit to the extra effort that went into using the Lagrange
multiplier method: it allows you to easily calculate the normal force on the coaster. Give an
explicit expression for this normal force.

C:15 Use the result of B4 to design a roller coaster loop. One simple design principle for a loop is that we
would like the centripetal acceleration that the coaster feels to be constant as it traverses the loop.
While this design principle does not fix a unique loop shape, explain how you can parameterize all
possible loops that do obey this constraint, and make plots giving at least one example of such a shape.
A numerical differential equation solver, such as Mathematica, will be needed for the last steps.
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