
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 4

Due: September 29 at 11:59 PM. Submit on Canvas.

Problem 1: Consider the rigid body rotation of a disk. Assume that, when the disk is oriented properly in
space, the disk has both rotational symmetry about the z-axis, together with symmetry under reflections
through the x, y and z axes. As discussed in Lecture 10, the Lagrangian for the theory will be of the form

L =
1

2
ṘiIṘiJKIJ + ΛIJ (RiIRiJ − δIJ) . (1)

A:10 Argue that (for an appropriate choice of basis in the body frame) the symmetries of the disk imply

KIJ →

 A 0 0
0 A 0
0 0 B

 (2)

for some constants A and B.

B:15 Let’s see that (2) holds in a more microscopic model. Suppose that the rigid body is made up of N
non-relativistic particles with coordinates xiα (α = 1, . . . , N denotes particle, while i = 1, 2, 3 denotes
the spatial coordinates). Suppose that the Lagrangian for the microscopic particles is

L =
N∑
α=1

1

2
mαẋiαẋiα, (3)

and that the microscopic particles are constrained to

xiα(t) = RiI(t)x̄Iα, (4)

where x̄Iα is a fixed constant, and RiI ∈ SO(3) is orthogonal.

B1. Plug in (4) into (3), and conclude that

KIJ =

N∑
α=1

mαx̄Iαx̄Jα. (5)

B2. In the “continuum limit”, we can approximate a rigid body to be a continuous object with mass
density ρ(x). We then replace (5) with

KIJ =

∫
d3x ρ(x)xIxJ . (6)

Suppose that in cylindrical coordinates, a cylinder of mass M , radius R and height H has uniform
mass density:

ρ(r, θ, z) =
M

πR2H
×
{

1 r < R, |z| ≤ H/2,
0 otherwise

. (7)

Calculate the 3 components of KIJ , and confirm they are of the form (2).
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C:15 Let us consider now the rigid body dynamics of our cylinder, assuming that A 6= B. Show that the
Euler equations for a rigid body from Lecture 10 can be solved in complete generality for this system.1

Problem 2 (Global shape of SO(3)): In this problem, we will describe an alternative to the Euler angles
of Lecture 11 that elucidates the global structure of SO(3).2 Start with the Lagrangian L = 1

2ṘiIṘiJKIJ ,
and assume that KIJ = K0δIJ for simplicity.

A:25 Define the basis of antisymmetric 3× 3 matrices

Jx =

 0 0 0
0 0 −1
0 1 0

 , Jy =

 0 0 1
0 0 0
−1 0 0

 , Jz =

 0 −1 0
1 0 0
0 0 0

 . (8)

Suppose we choose R(t) ∈ SO(3) such that

R(t) = exp [2α(t) (cosβ(t)Jz + sinβ(t) [cos γ(t)Jx + sin γ(t)Jy])] . (9)

A1. Use Mathematica (or similar software for symbolic manipulation) to show that

L0 = 4K0

(
α̇2 + sin2 αβ̇2 + sin2 α sin2 βγ̇2

)
. (10)

A2. Generalizing the discussion in Lecture 8, argue that the Lagrangian L0 describes motion on the 3-
dimensional sphere S3, which is defined as the subspace of the 4-dimensional plane (x, y, z, w) ∈ R4

obeying x2 + y2 + z2 + w2 = 1. You can use Mathematica for algebraic manipulations, but your
answer should clearly communicate the physics/math.

B:5 It turns out that the R(t) parameterized above completely capture all possible SO(3) matrices, and
thus our coordinates completely cover configuration space. However, there is something a little bit
peculiar. Find a trajectory [α(t), β(t), γ(t)] that begins and ends at the same point in configuration
space SO(3) – namely, the same R – yet does not begin and end at the same point on S3. Use this
construction to suggest that SO(3) must then be identified as S3 with opposite points identified.

S3 with opposite points identified is called three-dimensional real projective space RP3. Alternatively,
RP3 is the set of all lines passing through the origin in R4.

Problem 3 (Nearly-rigid body motion): Consider two rigid bodies which are connected together to form
a “nearly rigid body”. Assume they rotate about a common fixed point. Let RiI and SiI denote the
SO(3)-valued coordinates describing the configuration of each of the two rigid bodies.

A:15 An example of the Lagrangian you could write down for this dynamical system is

L =
1

2
AIJ ṘiIṘiJ +

1

2
BIJ ṠiI ṠiJ +

1

2
CIJRiISiJ + ΛIJ (RiIRiJ − δIJ) + µIJ (SiISiJ − δIJ) . (11)

A1. Show that L is left-SO(3) invariant. Explain the physical meaning behind this mathematical
requirement, how the desired symmetry should act on R and S, and why it is reasonable to
assume in this problem.

1You do not need to re-derive these equations from the Lagrangian; just assume the particular form of KIJ and use results
from lecture as needed.

2This problem is deeply connected to the quantum rotation group SU(2), which you can read about in the book (or learn
in quantum mechanics).
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A2. Give an example of a term that you could add to L without breaking the left-SO(3) invariance.
Assume time-reversal symmetry, and do not multiply existing terms together!

B:15 Make the change of variables
SiJ(t) = RiI(t)QIJ(t). (12)

B1. What is the Lagrangian in terms of R and Q? What are the constraints on Q?

B2. Justify the claim that writing L in terms of R and Q is more natural than in terms of R and S,
from the perspective of effective theory, because Q will be a “fast” degree of freedom while R will
be a “slow” degree of freedom.3

B3. When discussing molecular vibrations on e.g. Homework 2, you were able to decouple the slow
and fast degrees of freedom in the Lagrangian. Is that decoupling possible here for our nearly-
rigid body? As part of your answer, draw a picture that clearly explains (without equations) your
conclusion.

Problem 4 (Left-invariant dynamics on a Lie group):20 In Lecture 10, we claimed that the most general

Lagrangian with two derivatives for a rigid body was (up to Lagrange multiplier) ṘiIṘiJKIJ . You may
ask, however, why we did not write down the following even more general Lagrangian:

L =
1

2
AIJKLRiIṘiJRjKṘjL + ΛIJ (RiIRiJ − δIJ) . (13)

In this problem, we will explore the implications of this more general Lagrangian, where (unlike in class)
RiI will now be an n× n matrix.

As we will show, this Lagrangian is capable of describing dynamics on an abstract type of configuration
space called a Lie group. For the purposes of this problem, you can think of an n-dimensional Lie group
as characterized by a set of structure constants, which are fully antisymmetric tensors fabc = −fbac =
−fcba. Defining antisymmetric matrices T a whose components obey (T a)bc = fabc, a Lie group has the
property that tr(T aT b) = δab and

[T a, T b] = fabcT c. (14)

If G = SO(3), the structure constants fabc = εabc are nothing but the Levi-Civita tensor. We see that
rigid body rotation is the most important application of dynamics on Lie groups.

Generalizing Lecture 9, we can think of a configuration space for G by embedding it into the space
of n × n matrices. Near the identity element of the group, you can think of the Lie group G as an
n-dimensional space of the form (here εa is an n-dimensional vector)

R = 1 + εaTa + · · · . (15)

1. As in Lecture 10, define ΩIJ = RiIṘiJ . Show that there is an n× n antisymmetric matrix LIJ , which
you can interpret as “angular momentum”, for which the equations of motion are

L̇ = [L,Ω] = LΩ −ΩL. (16)

2. Argue that we can treat the configuration space as the Lie group G if

AIJKL = MabfaIJfbKL. (17)

Thus deduce the natural generalization of Euler’s equations to arbitrary G.

3. Having derived the dynamics on more general Lie groups G, explain why our slightly simplified choice
of Lagrangian in Lecture 10 captured the most general possible dynamics of three-dimensional rigid
body rotation.

3Hint: The conclusion here is quite general, but you should use the explicit form of L given in (11) if it helps you.
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