
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 5

Due: October 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Wobbly Earth): The Earth is not a perfect sphere, nor is its mass fully isotropically dis-
tributed. As such, we can approximate Earth to be a rigid body which is symmetric about one axis:
I1 = I2, and with

I3

I1
− 1 ∼ 3× 10−3. (1)

The axis the Earth rotates around most quickly is I3: ω3 ≈ 1/(1 day).

A:15 Let us begin by discussing the solution to Euler’s equations for a body of this kind. We have seen a
similar problem on Homework 4. Plugging in for the actual numbers associated with Earth, describe
the frequency of Earth’s wobbling around the 3-axis in its body frame.

B:5 For the rest of this problem, we will consider a more non-trivial source of Earth’s wobble, due to its
gravitational interactions with the Sun. A microscopic calculation of the effect requires analyzing the
gravitational potential energy of a non-spherical body, and one finds

L =
I1

2

(
θ̇2 + sin2 θφ̇2

)
+
I3

2

(
ψ̇ + φ̇ cos θ

)2
+

3

2
(I3 − I1)ω2

0 cos2 θ (2)

where ω0 ≈ 1/(1 year) is the orbital period of the Earth.

While fixing the exact prefactor of the last term above requires a microscopic calculation, explain why
the function cos2 θ that shows up in L is the minimal one which is consistent with either symmetries
or physical principles relevant for the problem.

C:10 Suppose that the system is on a physical trajectory such that θ = θ0 is independent of time.

C1. Evaluate the Euler-Lagrange equations for L given in (2), and find an equation that constrains
the value of θ.

C2. Following Lecture 12, use the conserved quantity pψ = I3ω3 to simplify your result from before
to an equation relating θ and φ̇.

C3. By using the physical values of ω0, ω3 and I3/I1, argue that the consistent solution to this equation
has φ̇ very small. Estimate it, and thus the period of Earth’s precession due to gravitational
interactions with the Sun. Compare with the period from part A.

D:15 Follow our analysis of the spinning top in Lecture 12, and show that we can analyze the motion
of Earth’s wobble by mapping on to an auxiliary one-dimensional dynamical system, for a particle
constrained to −1 ≤ z ≤ 1, with zero energy, and potential (per mass)

Veff(z) = −
(
1− z2

) (
a+ bz2

)
+ (c− dz)2 . (3)

Give expressions for the constants a, b, c, d in terms of I1, I3, ω0, ω3.
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E:10 Now consider more general a, b, c, d. You should ensure that at least in principle the values are physical
(e.g. you do not set a parameter that must be positive to in fact be negative!); you can also assume
that I3 > I1, as it is for Earth.

Qualitatively deduce all possible motions of a wobbly planet, by sketching all possible shapes for
Veff(z) (focusing on the number of zeros and where Veff is positive vs. negative).

Problem 2 (Nematic liquid crystals): In this problem, we will build an effective field theory for the
dynamics of nematic liquid crystals. A nematic is a rod-like molecule, whose configuration space can be
understood to be the space of lines passing through the origin of three-dimensional space. Similar to what
we saw on Homework 4, this configuration space is a two-dimensional space called RP2, and we can think
of it as the two-dimensional sphere S2 with opposite points identified.

We will not really consider the full theory of a liquid, where the molecules can move relative to
each other – we will assume that the nematic molecules are frozen in space, and focus on the rotational
dynamics of the nematics relative to each other.

A:20 Given the configuration space described above, we can think of building an effective theory for the
nematic by writing down S[ni(xj , t)], where (xj , t) denote the three spatial coordinates and time, while
ni denotes a unit vector on S2.

A1. Assuming spacetime locality, argue that we should write down

S[ni, λ] =

∫
d3xdt [L(ni, ∂tni, ∂jni, . . .) + λ(nini − 1)] , (4)

and explain the role of the λ term in this action.

A2. Why should we require that L(ni, ∂tni, ∂jni) = L(−ni,−∂tni,−∂jni)?
A3. Assume that the system has spacetime translation symmetry, and a combined spatial rotational

symmetry under which we rotate the unit vector ni and the spatial coordinate xi together. Also
assume that we have time-reversal symmetry t → −t and spatial inversion symmetry under
xi → −xi. Conclude that if we only allow for two derivatives in space and time, the most general
Lagrangian density is1

L = A∂tni∂tni −B(∂ini)
2 − C∂inj∂inj −Dnj(∂jni)nk(∂kni). (5)

B:25 In what follows, assume that A,B,C,D > 0. In equilibrium, the nematic liquid crystals are all aligned:

n̄i(x, t) = (0, 0, 1). (6)

Consider small fluctuations around this equilibrium:

ni = n̄i + δni, (7)

with δni infinitesimally small.

B1. Find constraints on δni coming from the requirement that the dynamics stays on configuration
space. In this part of the problem and what follows, keep only first order terms in δni.

B2. Write down the Euler-Lagrange equations for δni.

1You should neglect any terms that differ only by a total derivative.
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B3. Show that these equations of motion are identical to those that you would have found by first
plugging in the ansatz (7) into S, and keeping only quadratic terms in δni. Explain why this
makes sense.

B4. Solve these equations, assuming that δni ∼ ei(k·x−ωt). As part of your solution, you can try to
orient any coordinate axes in a convenient way, but you must describe all possible solutions to
the equations of motion. Thus, deduce the “normal modes” of a nematic liquid crystal.

C:15 Suppose that the nematics can interact with an external (static) magnetic field Bij = −Bji.2 Magnetic
fields break time-reversal explicitly, but we might expect that our effective theory is covariant under
time-reversal and inversion, meaning that the theory is unchanged under a suitable modification of
the external field:3

L(ni, ∂tni, ∂jni, Bij) = L(ni,−∂tni, ∂jni,−Bij) = L(−ni,−∂tni, ∂jni, Bij). (8)

C1. Keeping terms of at most two derivatives, write down the most general possible Lagrangian
obeying (8).

C2. Describe how, if at all, the normal modes change. For simplicity, you may assume that the
magnetic field is aligned along the z-direction, i.e. only Bxy = −Byx 6= 0. Keep only the leading
order terms as k → 0 in the dispersion relation ω(k) to simplify the calculation as much as
possible.

2We are using B instead of F , as in Lecture 7, to emphasize that it is just the magnetic field of interest.
3The semicolon denotes that B is not a dynamical field, but an important external parameter!
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