
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 9

Due: November 3 at 11:59 PM. Submit on Canvas.

Problem 1: Let (x, p) be canonically conjugate coordinates on R2. Let λ 6= 0 be constant. Consider the
coordinate transformation

X = λx, (1a)

P = λ−1p. (1b)

A:10 Show that the transformation to (X,P ) coordinates is canonical.

B:10 Find a function F (x, p) that generates the canonical transformations parameterized by λ.1

C:20 As we saw in Lectures 24 and 25, the function F can be associated with a continuous symmetry of
Hamiltonian H if {F,H} = 0.

C1. What is the most general Hamiltonian H(x, p) for which {F,H} = 0?

C2. Show that you can solve Hamilton’s equations of motion exactly for any Hamiltonian found in
C1.2 Does the answer make sense?

C3. Find a function G(x, p) for which {G,F} = 1.

C4. Re-interpret your results from C1 and C2 in (G,F ) coordinates. Do your previous results become
easier to understand in these new coordinates?

Problem 2 (Rigid body rotation): In Lecture 26, we saw how to derive Euler’s equations for a rigid body
from Hamiltonian mechanics, using the body frame Poisson brackets

{LI , LJ} = −εIJKLK . (2)

Indeed, as discussed there, the dynamics can be reduced to first order equations for LIs alone. Since there
are only 3 LI coordinates, these coordinates cannot by themselves be a “phase space” (i.e. a symplectic
manifold). However, we can find a symplectic manifold by thinking a bit more carefully.

A:10 We have a “trial” phase space R3: (L1, L2, L3). Argue that (2) alone restricts the dynamics to the
space

L2
0 = L2

1 + L2
2 + L2

3 (3)

where L0 is a constant. Deduce that the physical phase space is the two-dimensional space found
above. What is the geometry of this space?

1Hint: Let λ = 1 + ε, with ε infinitesimal. Then compare to Lectures 24 and 25.
2Hint: Use Noether’s Theorem to simplify the calculation, when appropriate!
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B:10 Suppose we choose coordinates

L1 = L0 sin θ cosφ, (4a)

L2 = L0 sin θ sinφ, (4b)

L3 = L0 cos θ. (4c)

Show that

{θ, φ} =
1

L0 sin θ
(5)

reproduces the angular momentum algebra (2).

C:20 We see a physical setting in which a compact symplectic manifold can arise in Hamiltonian mechanics.
Let’s show that the formalism developed in Lectures 24 and 25 continues to make sense.

C1. Describe the canonical transformation generated by the function L3.
3 What is its physical inter-

pretation?

C2. Suppose that we are given a Hamiltonian H for which {L3, H} = 0. Describe the most general
possible motion on phase space.

C3. Under what circumstances is this dynamics (and symmetry) realized by a Hamiltonian of the form

H =
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
. (6)

Does your result make sense?

Problem 3 (Symmetry algebras): In this problem, we will generalize our understanding of Noether’s
Theorem in Hamiltonian mechanics, building off of Lectures 23 and 25. We will (ultimately) see that in
Hamiltonian mechanics, it is natural to consider a symmetry algebra generated by a set of functions F a

and H which are closed under the Poisson bracket:

{F a, H} = MabF b + CaH, (7a)

{F a, F b} = fabcF c +KabH. (7b)

In this problem, assume that F a and H do not depend explicitly on time. You should further assume
ωαβ is the (ξ-independent) canonical symplectic form for the calculation.

A:20 Begin by assuming Ca = Kab = Mab = 0 – namely, we consider the same kind of symmetry algebras
as Lecture 25, which leave the Hamiltonian invariant.

A1. Starting with (recall Lecture 21)

S =

∫
dt

[
1

2
ωαβξ

αξ̇β −H(ξ)

]
, (8)

use the Lagrangian formulation of Noether’s Theorem (Lecture 3) to show that time-translation
invariance implies H is a Noether charge.

A2. Show that F a are conserved quantities (i.e. Noether charges) for the continuous symmetries
generated by the functions F a (as in Lecture 24 and 25).

3Hint: It might be useful to think about the coordinates from B.
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B:10 Now consider the more general case, in which H itself can be included in the symmetry algebra. For
technical convenience, go ahead and set Ca = 0.

B1. Again, consider the remaining symmetries associated with F a. In this case, we need to think
carefully about the correct symmetry transformations on the coordinates ξα. Argue that

ξα → ξα + ε{ξα, F a(−t)}. (9)

B2. Show that (8) is invariant under (9); this requires a few careful manipulations. What is the
corresponding Noether charge?

C:10 A physically relevant example of a theory with a non-trivial symmetry algebra of the kind studied
in B is the theory of a particle in one dimension with Galilean boost invariance (and translation
symmetries):

H =
p2

2m
. (10)

C1. What is the generating function of the canonical transformation corresponding to Galilean boosts?

C2. Derive the “Galilean symmetry algebra” in one dimension.

Although Hamiltonian mechanics is more abstract, it can have a much more elegant treatment of sym-
metries and the structure they imbue into a problem!
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