PHYS 5210 Graduate Classical Mechanics Fall 2023

Lecture 15

Noether's Theorem in field theory

October 2

Lagrangian field theory: $= \int d^{0}x \ \mathcal{L}(\phi^{\alpha}, \partial_{\mu}\phi^{\alpha}, \pi^{\mu})$ $S\left[\phi^{\alpha}(x^{\mu})\right]$ 1 spacetime coords n fields (a=1,..,n) (p=1,...,D) S made out of invariant building blocks under symmetries. For particles: Noether Thm: continuous symmetry -> conserved quantity: $\frac{dQ}{dt} = 0$. Generalization to fields: on phys. traj. cont. sym -> conserved current: $0 = \partial_{\mu} J^{\mu} = \frac{\partial}{\partial t} J^{\mu} + \frac{\partial}{\partial t} J^{\star} + \cdots$ $\begin{bmatrix} \partial_{\mu} x^{\nu} = S_{\mu}^{\nu} \end{bmatrix}$ If we restrict to D=1: U= du J^ = de Q $\partial_{\mu} \pi_{\rho} = \delta_{\mu}^{\nu} \eta_{\nu \rho}$

Derivation of following is similar to Lecture 3: Define continuous symmetry: infinitesimal transformation ... [2 infinitesimal] • $\mathcal{L}(x^{\mu}, \phi^{\alpha}) = \mathcal{L}(\tilde{x}^{\mu}, \tilde{\phi}^{\circ}) + \mathcal{L}(\tilde{y}^{\mu})$ · ~ + = x"+ EX" • $\tilde{\phi}^{a} = \phi^{a}(x^{n}) + \varepsilon \varphi^{a}(x^{m}) = \phi^{a}(\tilde{x}^{n}) + \varepsilon [\varphi^{a}(\tilde{x}^{n}) - X^{\vee}\partial_{\nu} \varphi^{a}(\tilde{x})] + \cdots$ where $S[\emptyset] = S[\emptyset]$. (action is invariant) S invariant if: $0 = \mathcal{R} \partial_{\mu} \chi^{\mu} + \partial_{\mu} K^{\mu} + \chi^{\mu} \frac{\partial \mathcal{L}}{\partial x^{\mu}} + q^{\alpha} \frac{\partial \mathcal{L}}{\partial \phi^{\alpha}} + (\partial_{\nu} q^{\alpha} - \partial_{\nu} \chi^{\mu} \partial_{\mu} q^{\alpha}) \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi^{\alpha})}$ If satisfied -> continuous symmetry. Noether's Thm: on solutions to EOM, JuJM=0 where $J^{\mu} = X^{\mu} \mathcal{I} + K^{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{\alpha})} (\varphi^{\alpha} - X^{\nu} \partial_{\nu} \varphi^{\alpha})$ du JM = 0 implies there's Q with dQ. Q = J dr. dydz Jt density of "Q" NOT time $\frac{dQ}{dt} = \int dx \dots \frac{\partial J^{t}}{\partial t} = \int dx \dots \left(-\frac{\partial J^{x}}{\partial x} - \dots \right) = 0$ if spatial bdy doesn't add/remove charge (almost always)

Example 1: massless Klein-Gordon theory $S[\phi] = -\frac{1}{2}\int d^{D}x \partial_{\mu}\phi \partial^{\mu}\phi$ (m=0)

Shift symmetry: $\phi \rightarrow \phi + \epsilon$. $\varphi = 1$, $\chi^{\mu} = 0$, $K^{\mu} = 0$ Conserved current: $T^{\mu} = \frac{\partial L}{\partial (\partial \mu \phi)} = -\frac{\partial \mu}{\partial (\partial \mu \phi)}$ Iower

$$\partial_{\mu} J^{\mu} = -\partial_{\mu} \partial^{\mu} \phi = 0$$

 $\int_{\overline{\delta\phi}} \frac{\delta f}{\delta \phi} = \partial_{\mu} \frac{\partial f}{\partial (\partial_{\mu} \phi)} = 0.$

Example 2: spacetime translation symmetry (almost always!) D symmetries $\leftarrow X^{\mu} = const. \leftarrow \begin{bmatrix} \frac{\partial L}{\partial x^{\mu}} = 0 \end{bmatrix}$ D $X^{1} = 1$ (D $X^{1} = 0$ (D $X^{1} = 0$ $X^{2} = 0$ $X^{2} = 0$... (D $X^{1} = 0$ $X^{2} = 0$ $X^{2} = 0$... (D $X^{1} = 0$ $X^{2} = 0$ $X^{2} = 0$... (D $X^{1} = 0$ $X^{2} = 0$ $X^{2} = 0$... (D $X^{1} = 0$ $X^{2} = 0$ $X^{2} = 0$... (D $X^{1} = 0$ $Y^{\mu} = 0$ $y^{\mu} = 0$.

Noether Thm:
$$J^{\mu}(\varepsilon) = J^{\mu} \varepsilon^{\nu}$$

 $J^{\mu}_{\nu} = \delta^{\mu}_{\nu} \mathcal{I}_{\nu} - \frac{\partial \mathcal{I}}{\partial (\lambda_{\mu} + \mu)} \delta^{\mu}_{\nu} \partial_{\mu} \phi = \delta^{\mu}_{\nu} \mathcal{I}_{\nu} - \frac{\partial \mathcal{I}}{\partial (\partial \mu + \mu)} \partial_{\nu} \phi$
 J^{μ}_{ν} is caserved $[\partial_{\mu} J^{\mu}_{\nu} = 0]$ for α^{ν}_{ν} translation.
In relativistic theories: "word!" "word!" "word!"
 $J^{\mu}_{\nu} \eta^{\nu} \rho \longrightarrow T^{\mu} \rho = \frac{energy - momentum}{stress - energy}$ all contos of
 $\partial_{\mu}T^{n} = 0$, $T^{\mu} \rho = \eta^{\mu} \rho \mathcal{I}_{\nu} - \partial^{\mu} \phi \frac{\partial \mathcal{I}}{\partial (\partial \mu + \mu)}$
Conservation of energy $(X^{\pm} = 1)$: $(\mu = t)$
 $E = \int d^{3}x$
 $\int d^{3}x$
 $\int t^{\mu} \sigma \int t^{\mu} \rho \cdots \int t^{\mu} \rho \int t^{\mu} \sigma \int t^{\mu} \rho \int t^{\mu} \sigma \int t^{\mu} \rho^{2} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} (\partial_{\mu} \phi)^{2} \cdots$
 $T^{\mu} t = -\mathcal{I}_{\nu} - (\frac{1}{2} t^{\mu} \partial_{\mu} \phi)^{\mu} + \frac{1}{2} t^{\mu} \eta^{\mu} \phi^{2}$
 $= \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{1}{2} (\partial_{\mu} \phi)^{2} + \cdots + \frac{1}{2} t^{\mu} \eta^{\mu} \phi^{2}$
 $\sum_{n=rergy}^{-1} \rho^{2} t^{\mu} \int t^{\mu} \sigma^{2} \rho^{2} = \frac{1}{2} (\partial_{\mu} t^{\mu})^{2} - \frac{1}{2} (\partial_{\mu} \phi)^{2} \cdots$