PHYS 5210
Graduate Classical Mechanics
Fall 2023

Lecture 16
Electromagnetism
October 4
Last time: Noether's Than: continuous symmetry

$$
\mathscr{L}(x) \rightarrow \mathscr{L}(x)-\varepsilon \partial_{\mu} K^{\mu}, \quad \phi^{a} \rightarrow \phi^{a}+\varepsilon \varphi^{a}, x^{\mu} \rightarrow x^{\mu}+\varepsilon X^{\mu}
$$

\longrightarrow conserved current $J^{\mu}: \quad\left[\partial_{\mu} J^{\mu}=0\right]$

$$
J^{\mu}=x^{r} \mathcal{L}+K^{\mu}+\frac{\partial \mathcal{L}}{\left.\partial \partial_{\mu} \phi^{a}\right)}\left(\varphi^{a}-x^{\nu} \partial_{\nu} \varphi^{a}\right)
$$

Usually: spacetime translation symmetry: $\frac{\partial \mathcal{L}}{\partial x^{\mu}}=0$.
\rightarrow conserved stress tensor

$$
\text { obeying } \quad \partial_{\mu} T^{k \nu}=0
$$

x^{2}-translation symmetry
Relativistic: $\quad T^{\mu \nu}=\eta^{\mu v} \mathcal{L}-\partial^{\nu} \phi^{\alpha} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \alpha^{\alpha}\right)}$

Claim: Lorentz invariance $\rightarrow T^{\mu \nu}=T^{\nu \mu}$
\downarrow
(lee 6) $\quad \begin{aligned} & x^{\mu} \rightarrow x^{\mu}+\varepsilon^{\mu}{ }_{v} x^{\nu} \\ & (\text { infinitesimal) }\end{aligned}$ with $\varepsilon^{\mu \nu}=-\varepsilon^{\nu \mu}$
Use Noether's Thy: $\quad X^{\mu}=\varepsilon_{\nu}^{\mu} x^{v} \quad$ so

$$
\tilde{J}^{\mu}(\varepsilon)=X^{v} T_{v}^{\mu}=\varepsilon_{\rho}^{v} x^{\rho} T_{v}^{\mu}=\varepsilon_{v \rho} x^{\rho} T^{\mu v}
$$

\tilde{J}^{μ} conserved:

$$
\begin{aligned}
& \tilde{F}^{\mu} \text { conserved: } \\
& \begin{aligned}
\partial_{\mu} \tilde{J}^{\mu}=0=\partial_{\mu}\left(\varepsilon_{\nu \rho} x^{\rho} T^{\mu \nu}\right) & =\varepsilon_{\nu \rho} \delta_{\mu}^{\rho} T^{\mu \nu}+\varepsilon_{\nu \rho} x^{\rho} \partial_{\mu} \delta^{\mu \nu} \\
& =\varepsilon_{v_{\mu}} T^{\mu \nu}
\end{aligned}
\end{aligned}
$$

e.g. Set $\varepsilon_{x y}=-\varepsilon_{y x}=1$: $40=T^{x y}$ - $T^{y x}$

$$
\text { rest }=0
$$

So: $\quad T^{\nu \mu}=T^{\mu \nu}$.

Today: EFT for electromagnetism.
Recall: E\&M has physical fields \vec{E}, \vec{B} :

$$
\nabla \cdot \vec{B}=0
$$

$$
\vec{E}=-\nabla \varphi-\frac{\partial \vec{A}}{\partial t} \quad \vec{B}=\nabla \times \vec{A}
$$

lee 7: $\vec{E} \in \vec{B}$ interns of gauge field $A_{\mu}=(-\varphi, \vec{A})$

Goal: Lagrangian that leads to Maxwell equations (in free space)
Note: $\partial_{\rho} F_{\mu \nu}+\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}=0 \rightarrow \nabla \cdot \beta=0 \quad \rho \mu \nu=x y z$

$$
=\left(\partial_{\rho} \partial_{\mu}-\partial_{\mu} \partial_{\rho}\right) A_{\nu}+\cdots=0 .
$$

$$
\nabla \times B=-\frac{\partial \epsilon}{\partial t} \quad \rho=t
$$

Constraint: A_{μ} is not uniquely defined due to "gauge symmetry"

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda(x) \quad \text { for any } \lambda(x)
$$

Best: think of A_{μ} and $A_{\mu}+\partial_{\mu} \lambda$ as "same points" in configuration sp
Simplest gauge-invariant building block: $F_{\mu v}$.

+ translation/Lorentz: $\quad F_{\mu \nu} F^{\mu \nu}$

$$
4 \mathcal{L}=-\frac{1}{4} F_{\mu v} F^{\mu \nu}+\underbrace{b\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+a \partial_{\rho} F_{\mu \nu} \partial^{\rho} F^{\mu \nu} F^{\alpha}}_{\text {irrelevant }}+\cdots
$$

Do we get Maxwell's equations?

$$
\begin{aligned}
\frac{\delta S}{\delta A_{\alpha}}=0 & =-\partial_{\beta} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\beta} A_{\alpha}\right)}=\frac{1}{4} \partial_{\beta}\left[\frac{\partial}{\partial\left(\gamma_{\beta} A_{\alpha}\right)}\left(\eta^{\mu \beta} \eta^{\nu \sigma} F_{\mu \nu} F_{\beta \sigma}\right)\right] \\
\frac{\partial F_{\mu \nu}}{\partial\left(\partial_{\beta} A_{\alpha}\right)} & =\delta_{\beta}^{\mu} \delta_{\alpha}^{v}-\delta_{\beta}^{\nu} \delta_{\alpha}^{\mu} \\
0 & =\frac{1}{4} \cdot 2 \eta^{\mu \rho} \eta^{\nu \sigma} \partial_{\beta}\left(F_{\rho \sigma}\left(\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}-\delta_{\beta}^{\nu} \delta_{\alpha}^{\mu}\right)\right) \\
& =\frac{1}{2} \partial_{\beta}\left(F^{\mu \eta}(\cdots)\right)=\frac{1}{2} \lambda_{\beta}\left(F^{\beta \alpha}-F^{\alpha \beta}\right)=\partial_{\beta} F^{\beta \alpha}
\end{aligned}
$$

$$
\begin{array}{ll}
\alpha=t: \quad & 0=\partial_{i} F^{i t} \\
& \left(i j=\partial_{i}\left(-E^{i}\right) \quad\right. \text { space only) } \\
\alpha=j: \quad 0=\partial_{t} F^{t_{j}}+\partial_{i} F^{i j} & =+\partial_{t} E_{j}+\partial_{i}\left(\varepsilon_{i j k} B_{k}\right) \\
& =\left[\partial_{t} \vec{E}-\nabla_{\times} \vec{B}\right]_{j} \quad \text { [Anpere-Maxwell] }
\end{array}
$$

Normal modes of EFT: $\quad \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$
linearize: $\quad A_{\mu}=0+\delta A_{\mu} \rightarrow A_{\mu}$.

$$
\partial_{\mu} F^{\mu \nu}=0=\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)
$$

Spacetime trans symmetry: $\quad A^{\mu}=a^{\mu} e^{i k_{\alpha^{\alpha^{\alpha}}}}=a^{\mu} e^{-i \omega t+i \vec{k} \cdot \vec{x}}$ on plane waves: $\partial_{\mu} \Rightarrow i k_{\mu} \quad \partial^{\mu} \rightarrow i k^{\mu}$

$$
k^{\mu}=\left(\begin{array}{l}
\omega \\
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right) \rightarrow\left(\begin{array}{l}
\omega \\
\vdots \\
0 \\
0
\end{array}\right) \quad\left[\begin{array}{llll}
\text { align } & x \text {-axis } & w / & \vec{k}
\end{array}\right] .
$$

$$
0=-k_{\mu} k^{\mu} a^{\nu}+k^{\nu} k_{\mu} a^{\mu}
$$

Take $v=y, z: \quad 0=\underbrace{\left(-\omega^{2}+k^{2}\right)} a^{y, z} \quad[\omega= \pm k \quad[\omega= \pm c k]$ photon
Take $v=t, x: \quad-\left(\omega^{2}-k^{2}\right) a^{t}=\omega\left(-\omega a^{t}+k a^{x}\right)$

$$
-\left(w^{2}-k^{2}\right) a^{x}=k\left(-w a^{t}+k a^{x}\right)
$$

$$
G \frac{a^{t}}{a^{x}}=\frac{\omega}{k}
$$

So: $\quad a^{t}=i \omega \cdot$ const, $\quad a^{x}=i k \cdot$ const.

$$
\longrightarrow \frac{a^{\mu}=\partial \mu e^{i k_{\alpha} x^{\alpha}}}{\text { gange redundancy }}
$$ unphysical.

Summarize: normal modes ofEFT of electronagnetish,

$$
=2 \text { photons }
$$

