PHYS 5210 Graduate Classical Mechanics Fall 2023

Lecture 27

Generating functions for canonical transformations

October 30 Hamiltonian mechanics: $\Pi_{x,p}$) $\rightarrow \frac{dF}{dF} = \{F, H\}$. (1) algebra of symmetry generators (integrable) (chaotic) rest of class... First goal: what are the best courds in phase space? each conservation law "remove d" 2 dimensions from phase space ... This week: "finding conserved q's ... " Tuday: finding good canonical transformations. "large!" 3 -> ya (3), where 23, 5BZ= 2 ya, nBZ lec 24: infinitesimal CT generated by 5x -> 5x + 2 25x, F} Ly "nd → e s. adf gd"

-

Example 2: infinitesimal CTs	are type 2]
e.g. identity x; →X; & p; →Pi	
$F_2(x_i, P_i) = x_i P_i + q \cdot F(x_i, P)$	
$P_{i} = \frac{\partial F_{L}}{\partial x_{i}} = P_{i} + \varepsilon \frac{\partial F}{\partial x_{i}}$ $\int_{P_{i}} P_{i} \sim P_{i} - \varepsilon \frac{\partial F(x, p)}{\partial x_{i}}$	$\chi_i = \frac{\partial F_2}{\partial P_i} = \kappa_i + \varepsilon \frac{\partial F}{\partial P_i}$
$L_{i} P_{i} \sim P_{i} - \varepsilon \frac{\partial r_{i}}{\partial r_{i}}$	$X_i = x_i + \varepsilon \frac{\partial F(x_i p)}{\partial p_i}$
Pi ≈ p;+ 22pi, F3	$X_i = x_i + \xi \{x_i, F\}$
Time-dependent CTs: Consider a Type 2 CT: F2(xi, Pi,t)	
Consider a Type 2 Cl: F.	$2(x_i, P_i, t)$
Claim: if $H' = H + \frac{\partial F_2}{\partial t} \dots$	
Why? general G: $\frac{d G(x,p,t)}{dt} = \frac{\partial G}{\partial t}$ Now: plug in $G = X_i = \frac{\partial F_2}{\partial P_i}$.	$+\frac{\partial G}{\partial x_{i}}\dot{x}_{i}+\frac{\partial G}{\partial p_{i}}\dot{p}_{i}=\frac{\partial G}{\partial t}+\hat{\xi}G,H\hat{\xi}.$
Now: plug in $G = X_i = \frac{\partial F_2}{\partial P_i}$	$\{X_i, H\} = \frac{2H}{\partial P_i}$
$\dot{X}_{i} = \frac{\partial}{\partial t} \frac{\partial F_{L}}{\partial P_{i}} + \frac{\xi X_{i}}{CT's} Hg$	anged. If H(X,P):
$\dot{X}_{i} = \frac{\partial}{\partial t} \frac{\partial F_{L}}{\partial P_{i}} + \frac{\{X_{i}, H\}}{CT's \text{ leave } PB \text{ unch}}$ $\begin{pmatrix} \dot{X}_{i} = \frac{\partial}{\partial P_{i}} \left[H + \frac{\partial F_{L}}{\partial E} \right] = \frac{\partial H'}{\partial P_{i}}$	$if H' = H + \frac{\partial F_2}{\partial t}.$
	express H(1/1)
	Linverting picturing
Final note: for Type I CTs: H'= H+2F1.	