PHYS 5210 Graduate Classical Mechanics Fall 2023

Lecture 30

Adiabatic theorem

November 6

lec 29: action -angle variables
$$(\phi, T)$$
 have $H = H(T)$ const. $\{\phi_A, T_B\} = \delta_{AB}$ time-independent if done: $\phi = \frac{\partial H}{\partial T} = \omega$ $J = -\frac{\partial H}{\partial \phi} = 0$, so $J = const$. If found \rightarrow integrable!

Today: Aside!

Adiabatic Theorem: if H(J;t) changes very slowly in t, then J=0

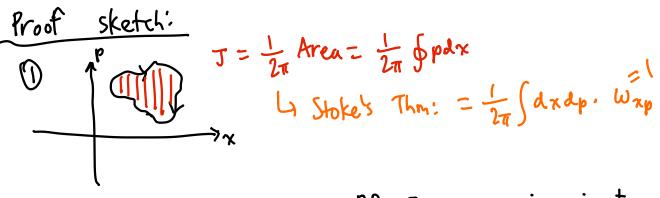
and so at each t, approx. using AA variables for Hatt.

So: J is an "adjabatic invariant".

How slowly does H need to vary w/t?

 $\dot{\phi} = w > \frac{1}{\tau}$ where τ is time scale on which 4 varies

then adiabatic approx good.



(next orbit) coming from $H(J) \rightarrow H(J, t = \frac{2\pi}{w})$ 2) Now let H vary slowly (T>> 2)

time evolution w/ H(t) still generates CT... by O, blue/black curves enclose same Area= 271 J.

Adiabatic Thm: $J = \frac{1}{2\pi} \oint p dx \approx const.$ "fixed t"

Example 1: Harmonic oscillator. H= p2 / mwst)2x2 · Vary wolt adiabatically (slowly). wo > 2wo. How does amplitude of oscillations (20) change? Find AA variables (lec 29): $J = E/\omega$. so if $\omega_0 \rightarrow 2\omega_0$, then $J \rightarrow J$, and $E \rightarrow 2E$.

Amplitude
$$E = \frac{1}{2} m v_0^2 x_0^2$$

 $\frac{1}{2E} = \frac{1}{2} m (4 w_0^2) (x_0^2)^2$

and
$$x_0' = \frac{1}{J_2} x_0$$
.

What if change abrupt? instantaneous

- If change happens when p=0, then $x_0 \to x_0$. If change when x=0, then $x_0 \to \frac{1}{2}x_0$ (E fixed)

$$x_0 \rightarrow \frac{1}{2}x_0$$
 (E fixed

Example 2: particles in B-fields H= (p; -qA;)(p; -qA;)

Suppose $\hat{B} = B_0 \hat{z}$. What's J?

 $J = \frac{1}{2\pi} \oint [dx p_x + dy p_y]$ on orbit.

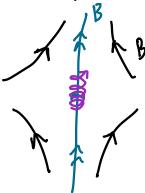
I) use $J=L_z$ (ang. nom.) since in polar coords, $\dot{\theta}=\omega_c$

in: $H = \frac{p_r^2}{2m} + \frac{\left(L_z - \frac{9}{2}g_{or^2}\right)^2}{2mr^2} + \frac{p_z^2}{2m}$

Stable circular orbit if Veff(r) has minimum

when $L_z = \frac{9B_0}{2}r^2$ $\sqrt{7} = \frac{9B_0r^2}{2} = \frac{1}{2\pi}9\frac{E_B}{B}$ (orbit)

Now suppose:



particle drifts along field line, "82" slowly changing.

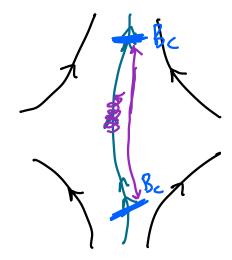
Think of motion in Z-direction as adiabatic...

Adiabatic Thmi circular orbit enclose Eg or B·r²= const.

Use energy conservation:

$$V_{\theta} = wr = \frac{qB}{m} r$$

(Newton's Law)



 $E = \frac{1}{2}mv_z^2 + \frac{9B}{2m}J^2$ particle can't exceed $Bc = \frac{2mE}{9J}$

particle s trajectory bounces

-> "magnetic mirror"