PHYS 5210 Graduate Classical Mechanics Fall 2023

Lecture 33

Perturbation theory: many degrees of freedom

November 13

Today: pertur bation theory from old AA (\$0A, JA) new AA (\$A, JA) given Hamiltonian H= Ho(Jo) + EH, (Jo, Fo) In new coords: want H= H(f) -> integrable! Followles 32: look for Type 2 CT $S(\vec{k}_{0},\vec{f}) = \vec{k}_{0}\cdot\vec{f} + \epsilon S_{1}(\vec{k}_{0}+\vec{f}) + higher orders...$ 2 POA TA $\oint_{A} = \frac{\partial S}{\partial J} = \phi_{0A} + \varepsilon \frac{\partial S_{1}}{\partial J_{A}} + \cdots$ $J_{OA} = \frac{\partial S}{\partial \phi_{OA}} = J_{A} + \varepsilon \frac{\partial J_{I}}{\partial \phi_{OA}} + \cdots$

In new coords: $H = H_{o}(\overline{J}_{oA}) + \varepsilon H_{I}(J_{oA}, \phi_{oA})$ $\int H_{o}(J_{A} + \varepsilon \frac{\partial S_{i}}{\partial \phi_{oA}}) \qquad \varepsilon H_{i}(J_{A}, \phi_{oA}) + \cdots$ $H = H_{o}(J_{A}) + \varepsilon \left[\sum_{A} \frac{\partial H_{o}}{\partial J_{A}} \frac{\partial S_{I}}{\partial \phi_{OB}} + H_{I}(J_{A}, \phi_{OA}) \right]$ ZωOA Expand H1, S1 as Fourier series: $S_{1} = \sum_{each M_{A}=-\infty}^{\infty} e^{i\vec{n}\cdot\vec{\phi}_{0}} S_{ij}(\vec{J}) \qquad H_{i} = \sum_{M_{i}=-\infty}^{\alpha} e^{i\vec{n}\cdot\vec{\phi}_{0}} h_{ij}(\vec{J})$ We need: $\xi \sum_{\vec{r}} e^{i\vec{m}\cdot\vec{\phi}_0} \left[\sum_{A} \omega_{oA} im_A S_{R}(\vec{J}) + h_{\vec{m}}(\vec{J}) \right]$ to be ind. of $\vec{\varphi}_0$. choose given Chouse: $s_{\sigma}(f) = 0$. (if all $m_A = 0$) $S_{\vec{n}} = -\frac{h_{\vec{n}}(\vec{J})}{i\vec{n}\cdot\vec{\upsilon}_{o}}$ (if $\vec{n}, \neq \vec{0}$) $J^{:}$ $H = H_{o}(J) + \epsilon h_{o}(J) + 0 = H(J)$ [integrable? And'. Any loophole? M. wo =0? if happens when $h_m \neq 0$, then PT tails! regions where AA defined "split"

$$H = \begin{bmatrix} J_{01}^{2} + J_{01}^{2} \\ 2I + 2I \end{bmatrix} + \sum (os)(\phi_{0,1} - \phi_{0,2}) \\ H_{0} \\ H_{0} \\ H_{0} \\ H_{0} \\ H_{0} \\ H_{1} \\ H_{1$$

Dr:
$$coS(P_{0,1}-P_{0,2}) = \frac{1}{2} \left[e^{i(P_{0,1}-P_{0,2})} + e^{-i(P_{0,1}-P_{0,2})} \right]$$

which $h_{R} \neq o^{?}$ $(m_{1,Mn}) = (1, -1) = (-1, 1)$
 $S_{1,-1} = -\frac{1}{2i(W_{0,1}-V_{0,2})} = -S_{-1,1} \right] \xrightarrow{P} S_{1} = \Phi_{0,1} + \Phi_{0,1}J_{2}$
 $F_{1,-1} = -\frac{1}{2i(W_{0,1}-V_{0,2})} = -S_{-1,1} \right] \xrightarrow{P} S_{1} = \Phi_{0,1} + \Phi_{0,1}J_{2}$
 $V_{0,1} = \frac{3H_{0}}{3J_{1}} = \frac{J_{1}}{I}$ and $w_{0,2} = \frac{2H_{0}}{3J_{2}} = \frac{J_{2}}{I}$
 $W_{0,1} = \frac{3H_{0}}{3J_{1}} = \frac{J_{1}}{I}$ and $w_{0,2} = \frac{2H_{0}}{3J_{2}} = \frac{J_{2}}{I}$
 $F_{erturbation}$ theory fails if $J_{1} \approx J_{2}$.
To understand why, switch coords: (via CT)
 $\overline{J} = J_{0,1} + J_{0,2}$ $\overline{P} = \frac{\Phi_{0,1} + \Phi_{0,2}}{2}$ $\{\overline{P}, \overline{J}\} = 1$.
 $\overline{J} = \frac{J_{0,1} - J_{0,2}}{2}$ $\overline{P} = \Phi_{0,1} - \Phi_{0,2}$ $\{\overline{P}, \overline{J}\} = 1$.
"center of mass coords"
 $S H = \frac{\overline{J}^{2}}{4T} + \frac{\overline{J}^{2}}{T} + \varepsilon \cos \overline{P}$ [exact, not PT]
 $\overline{J} = J_{0,1} - F_{0,1} + \frac{F_{0,2}}{T}$ $\overline{J} = F_{0,1} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,2} + F_{0,2} + F_{0,1} + F_{0,2} + F_{0,2} + F_{0,2} + F_{0,2} + F_{0,1} + F_{0,2} + F_{$