
PHYS 5210: Graduate Classical Mechanics Fall 2024

Exam

Due: December 16 at 11:59 PM. Submit on Canvas.

You are allowed to refer to any course materials (including posted solutions), any books, and the Internet
(e.g. Wikipedia, papers). Do not collaborate with any human or AI; do not solicit help via Physics-
Forums, Chegg, Quora or any similar website. You may ask the instructor alone for help in the form of
clarifying questions. Please cite (in any reasonable way) any references, including online resources, that
you have used.

Problem 1 (Particle on a torus): A two-dimensional torus, parameterized by a pair of angle coordinates
(θ, φ), can be embedded into our three-dimensional world R3 via the following map:

x = (b+ a sin θ) cosφ, (1a)

y = (b+ a sin θ) sinφ, (1b)

z = a cos θ. (1c)

We take the parameters b > a > 0.

A:10 Following Lecture 8, one way we could deduce the Lagrangian for a non-relativistic particle moving
on this torus is to begin with

L =
m

2

(
ẋ2 + ẏ2 + ż2

)
(2)

and simply plug in the transformation (1). Do this, and find the Lagrangian L(θ, φ, θ̇, φ̇).

B:10 Perform a Legendre transform and deduce a Hamiltonian with canonical coordinates (θ, φ, pθ, pφ):

H =
p2
θ

2ma2
+

p2
φ

2m(b+ a sin θ)2
. (3)

What is the resulting phase space?

C:10 Describe qualitatively the possible kinds of trajectories of particles as they move along the torus.

D:15 Describe how to solve for the dynamics of the particle using the Hamilton-Jacobi equation. You do
not need to evaluate integrals to find the full expression for S.
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Problem 2 (Charge density waves): In some solid-state systems, the electron density spontaneously
forms a periodic pattern called a charge density wave. We can model this in a cartoon effective field
theory, where φ(x, t) denotes e.g. the modulating density variable. Assume that the theory has spacetime
translation symmetry, time-reversal symmetry, and lives in one spatial dimension (plus time). Moreover,
suppose that for any constant x0 – and fixed constant q – the equations of motion admit ‘stable’ equilibria

φeq(x, t) = cos(q(x− x0)). (4)

A:10 Explain why the simplest effective field theory you can build with all of the necessary symmetries,
and which should exhibit stability for configurations (4), has Lagrangian

L =
1

2
A(∂tφ)2 − 1

2
B
(
(∂xφ)2 + q2φ2 − q2

)2
. (5)

B:15 Plug in the ansatz
φ = cos(qx+ θ(x, t)) (6)

into S =
∫

dtdxL. Argue that if |∂xθ| � q, you find an effective Lagrangian1

Leff =
A

4
(∂tθ)

2 − 3Bq2

4
(∂xθ)

2 + · · · . (7)

Justify all of the (obvious?) continuous symmetries of the new effective Lagrangian Leff . Deduce the
normal modes of the charge density wave effective field theory.

Problem 3 (Modified time-translation symmetry): In this problem, we will build a Lagrangian effective
theory for a particle in configuration space R2, with coordinates (x, y), assuming the modified time-
translation symmetry (using the notation of Lectures 2-4):

T = 1, (8a)

X = αy, (8b)

Y = −αx. (8c)

A:10 Write down the most general invariant Lagrangian under this continuous symmetry.2 On very long
time scales, what is the effective theory for this system? The answer may depend on unknown functions
function of (x, y, t), but you should keep as few time derivatives as possible.

B:10 Use Noether’s Theorem to find a conservation law associated with this continuous symmetry. Use the
leading order effective theory from A.

C:10 Is it possible to find a Lagrangian L which is not invariant under this continuous symmetry, but for
which we would still classify the theory as symmetric? Why or why not?

1Hint: If θ were constant in x (or very slowly varying...) you can perform the integral over x explicitly to get rid of any
trigonometric functions of qx.

2Hint: Avoid trying to solve the general equation from Lecture 2 for the most general possible L. Instead, first think
about physically what this symmetry is, and see if you can leverage some results from class.
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Problem 4 (Onset of chaos in the kicked rotor): Consider the kicked rotor (Lecture 36), at perturbatively
small ε. Work in dimensionless units.

A:10 Follow Lecture 32 and aim to develop a perturbation theory for a general discrete map of the form

Jn+1 = Jn + εK(Jn, θn), (9a)

θn+1 = θn +Ω(Jn) + εL(Jn, θn) (9b)

to first order in ε; namely, try to define a

J̃n = Jn + εM(Jn, θn) (10)

such that
J̃n+1 = J̃n + O

(
ε2
)
. (11)

Find a formula for such an M by writing both M and K as a Fourier series in the periodic variable
θn ∼ θn + 2π. Explain where perturbation theory breaks down at first order.

B:10 Now return to the kicked rotor. Where will perturbation theory break down at first order? Analytically
predict what the dynamics of the kicked rotor map will look like near the region of phase space where
perturbation theory fails. Numerically confirm that your prediction is correct.
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