
PHYS 5210: Graduate Classical Mechanics Fall 2024

Homework 11

Due: November 19 at 11:59 PM. Submit on Canvas.

Problem 1 (Disordered box): In this problem, use the perturbation theory for a single action-angle pair
developed in Lecture 32.

A:15 Consider a problem in which H = H0(J0)+εH1(φ0, J0) following Lecture 32, and further suppose that
the Fourier coefficient h0 = 0. Carry out perturbation theory to second order, starting with writing
generator S = φ0J + εS1 + ε2S2 + · · · . Show that in this case, the Hamiltonian is given, up to second
order, by

H(J) = H0(J)− ε2
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B:10 Suppose H0 describes a free particle of mass m in a box with hard walls of size L. Argue that in this
case, the momentum p becomes proportional to the action variable J , and that

H0(J) =
π2J2

2mL2
. (2)

C:15 Now, consider H = H0 + εV (x), where H0 is (2) and V (x) is a random function with zero mean:

L∫
0

dxV (x) = 0. (3)

Show that this perturbation obeys the criteria of A. Compute the leading-order correction to the
frequency of oscillations of a particle in the disordered box. Does the sign of your answer (does the
oscillation period increase or decrease?) make physical sense?

Problem 2 (Perturbation theory to all orders):25 In this problem we will look at a very simple example
where the high order perturbation theory of Lecture 34 can be carried out explicitly. Consider the simple
harmonic oscillator, which we solved using action-angle variables in Lecture 29:

H0 =
p2

2m
+

1

2
mω2x2. (4)

Now consider modifying the Hamiltonian to H = H0 + εH1 where

H1 = ε · 1

2
mω2x2. (5)

First, explain with as little computation as possible what H(J ; ε) is. Your expression should be exact
to all orders in ε. Then, show how to exactly reproduce this result using the high-order perturbation
theory, resummed to all orders.1

1Hint: Start at first order in perturbation theory, and find the form of A1. Then, argue that {A1, H0} and {A1, H1}
always reduce to linear combinations of H0 and H1. Conclude that all An can be chosen to be proportional to A1, and
therefore that all you need to do is solve exp[s · adA1 ](H0 + εH1) = H0 for the parameter s(ε).
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Problem 3 (Billiard ball): Consider a free particle in an approximately circular box of radius a. The
Hamiltonian of the system in polar coordinates is

H =
p2r

2M
+

p2θ
2Mr2

+ Vwall(r, θ) (6)

where we will approximate that for some integer m > 1,

Vwall(r, θ) = A ·Θ(r − a+ εa cos(mθ)) ≈ A ·Θ(r − a) + εaA · δ(r − a) cos(mθ). (7)

Here Θ is the step function

Θ(x) =

{
1 x ≥ 0
0 x < 0

. (8)

while δ is the Dirac δ function. As depicted in Figure 1, this potential is a decent proxy for the shape of
the box’s walls, with ε proportional to the deviation away from circular walls. In the entire problem that
follows, you should always work with Vwall Taylor expanded to first order in ε, for convenience.

A:15 First, analyze the problem when ε = 0, so the box is perfectly circular. Describe how action-angle
variables can be found: one associated with θ and one associated with r, assuming that the energy of
the particle is smaller than A. While H(Jr, Jθ) does not have a nice expression, write down a formal
integral expression for Jr as a function of E and Jθ. Differentiate this expression with respect to Jr
and Jθ and show that
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B:10 Sketch the trajectories of the billiard, when ωr and ωθ are commensurate, and incommensurate. In
each case, describe what dimensional subspace of the disk, in (r, θ) coordinates, will be explored
densely over time. Argue that if Jθ = 0 or Jθ = ±a

√
2mE, the action-angle coordinates above are

sick, and we should neglect this part of phase space.

C:10 Deduce that m = 0, 1, 2 perturbations might be integrable everywhere, as there is no obvious break-
down of perturbation theory. What shapes are the walls in these cases?

D:15 Describe what happens at first order in perturbation theory, assuming that m > 2. In which parts of
phase space does perturbation theory break down? Sketch the billiard’s trajectories in the deformed
circular box as accurately as you can in these regions.

Figure 1: A sketch of the billiard’s domain with and without the perturbation ε, for the specific case m = 4.
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