
PHYS 5210: Graduate Classical Mechanics Fall 2024

Homework 8

Due: October 29 at 11:59 PM. Submit on Canvas.

Problem 1 (Symplectic reduction from 4 to 2 dimensions): Consider the phase space R4 with canon-
ical coordinates (x1, x2, p1, p2). In this problem, we will build two-dimensional symplectic manifolds via
symplectic reduction (Lecture 23).

A:15 Let’s start with a physical illustration of the idea. Consider the diatomic molecule Lagrangian
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from Lecture 5. Perform the Legendre transform and show that you obtain Hamiltonian
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Show that {p1 + p2, H} = 0, and explain what this physically means.

B:15 Show that performing symplectic reduction on R4 using the canonical transformations generated by

F1 = p1 + p2 (3)

gives you a new phase space R2. What are a natural set of canonical coordinates on the reduced phase
space? What is their physical interpretation, in the context of the diatomic molecule?

C:15 As an unusual modification of the above, consider instead performing symplectic reduction on R4 by
the function

F2 = p2
1 + p2

2. (4)

Show that the symplectic manifold that results is a cylinder.

D:15 Next do symplectic reduction by

F3 = x2
1 + x2
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2. (5)

Show that the symplectic manifold M that comes from performing symplectic reduction is the two-
sphere S2, which is therefore a symplectic manifold.1

1Hint: First show that the level sets of F3 are the three-dimensional sphere S3, and that the canonical transformations
generated by F3 are periodic in time. Can you try to match each point on the symplectically reduced phase space to a point
(x1, p1)? What goes wrong?
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Problem 2 (Rotation symmetry with an unusual symplectic form): Consider the following action de-
scribing a Hamiltonian system (in the generalized sense of Lecture 24) on phase space R4: for some
positive function A > 0,

S =

∫
dt
[
A
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)

(pxẋ+ pyẏ)−H(x, y, px, py)
]
. (6)

A:15 Identify the symplectic potential λα and then calculate the symplectic form ωαβ = ∂αλβ−∂βλα. What
are Hamilton’s equations, written in terms of the symplectic form?

B:10 Explain why the following infinitesimal transformation is canonical:

x→ x− εy, (7a)

y → y + εx, (7b)

px → px − εpy, (7c)

py → py + εpx. (7d)

Find the function on phase space – call it angular momentum M – that generates this canonical
transformation.

C:15 Show that a general Hamiltonian of the form
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is symmetric under the canonical transformation generated by M . Replace (x, y) with polar coordi-
nates (r, θ), and show that performing symplectic reduction via (7) leads to an effective Hamiltonian
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where we have defined pr such that {r, pr} = 1.

Problem 3 (Symplectic reduction for rigid body rotation): In this problem we will study how vari-
ous rigid body rotation problems, in the presence of certain symmetries, lead to interesting symplectic
reductions from the starting phase space T∗SO(3).

A:10 Consider a fully asymmetric spinning top, with I1 6= I2 6= I3. As in Lecture 11, suppose that the top is
placed in a uniform gravitational field. Assume that the center of mass of the spinning top is aligned
with the 3-axis. Argue that the resulting Lagrangian has one obvious continuous symmetry generator.2

Although you don’t need to explicitly derive the Hamiltonian, perform symplectic reduction on the
phase space of the spinning top and describe what the resulting phase space is.

B:10 Now, suppose that the asymmetric top rotates in the absence of any external forces. Using the
Hamiltonian formalism of Lecture 25, identify the generators of canonical transformations that leave
the remaining Hamiltonian invariant, and explain their physical interpretation. Perform symplectic
reduction under all such symmetry generators and identify the resulting symplectic manifold.3

2Hint: use Euler angles.
3Hint: for RiI ∈ SO(3), εijk = εIJKRiIRjJRkK .
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