Homework 9

Due: November 5 at 11:59 PM. Submit on Canvas.

Problem 1 (Chiral anomaly): On Homework 5, we discussed the chiral anomaly in 1+1 dimensions. In this problem, we revisit such a system from a Hamiltonian field theory perspective instead. Let $\rho(x)$ denote the density of a conserved charge, and consider Hamiltonian

$$H[\rho] = \int \mathrm{d}x \epsilon(\rho(x)). \tag{1}$$

In the presence of a chiral anomaly, the Poisson bracket

$$\{\rho(x), \rho(y)\} = -\partial_x \delta(x - y). \tag{2}$$

Assume that integrals over the coordinate x have vanishing boundary terms at $\pm\infty$.

- A: By calculating $\{\int dx f(x)\rho(x), \int dy g(y)\rho(y)\}$, confirm that the Poisson bracket defined by (2) is anti-20 symmetric. Why will it also obey the Jacobi identity? Following Lecture 26, evaluate $\partial_t \rho = \{\rho, H\}$ and deduce the Hamiltonian equations of motion.
- **B**: To compare with Homework 5, we would like to find a Lagrangian formulation of this problem. 15 However, due to the derivative in (2), this is not immediately obvious. A convenient trick is to introduce additional "phase" degrees of freedom $\phi(x)$, with Poisson bracket $\{\phi(x), \phi(y)\} = 0$ and

$$\{\phi(x), \rho(y)\} = \delta(x - y). \tag{3}$$

In other words, phase and density are thus canonical conjugate degrees of freedom. Using this definition, conclude that the Hamiltonian field theory action takes the form of²

$$S[\rho,\phi] = \int \mathrm{d}x \left[\rho \partial_t \phi + \frac{1}{2} \partial_t \phi \partial_x \phi - \epsilon(\rho) \right]$$
(4)

Show that you can "integrate out" ρ , which now looks like a Lagrange multiplier,³ and that after doing so, the resulting theory expressed only in terms of ϕ has the reparameterization symmetry from Homework 5.

¹The function $\partial_x \delta(x)$ is defined such that $\int dx f(x) \partial_x \delta(x) = -f'(0)$.

^{2}*Hint:* Notice that the Poisson brackets are not field-dependent. If we were talking about a finite-dimensional phase space, we could then try to write $L = \frac{1}{2}\omega_{\alpha\beta}\xi^{\alpha}\dot{\xi}^{\beta} - H$. You can try to do the same thing in field theory. Lastly, you may use the following block matrix identity: $\begin{pmatrix} 0 & \delta \\ -\delta & D \end{pmatrix}^{-1} = \begin{pmatrix} D & -\delta \\ \delta & 0 \end{pmatrix}$.

³*Hint:* Think about transitioning from Hamiltonian mechanics back to Lagrangian mechanics!

Problem 2 (Parabolic coordinates): In this problem, we will study a seemingly complicated problem which can be cleverly solved using the Hamilton-Jacobi method. Consider a system in cylindrical coordinates (ρ, ϕ, z) with canonical conjugate momenta $(p_{\rho}, p_{\phi}, p_z)$, and Hamiltonian

$$H = \frac{1}{2m} \left[p_{\rho}^2 + \frac{p_{\theta}^2}{\rho^2} + p_z^2 \right] - \frac{k}{\sqrt{\rho^2 + z^2}} - Fz.$$
(5)

This models the electron orbiting the proton in a hydrogen atom, placed in a uniform electric field.

It is far from obvious (but we will verify, true) that this problem can be solved by moving to parabolic coordinates (ξ, φ, η) :

$$z = \frac{\xi - \eta}{2},\tag{6a}$$

$$\phi = \varphi, \tag{6b}$$

$$\rho = \sqrt{\xi \eta}.\tag{6c}$$

- 20 A: Find expressions for (ξ, η, φ) in terms of (ρ, ϕ, z) . Then use a type-2 generating function of the form $F(\rho, \phi, z, P_{\eta}, P_{\varphi}, P_{\xi})$ to find expressions for the new canonical momenta $(P_{\eta}, P_{\varphi}, P_{\xi})$ in terms of the old $(p_{\rho}, p_{\phi}, p_z)$.⁴ Lastly, re-write H in terms of the new coordinates $(\eta, \varphi, \xi, P_{\eta}, P_{\varphi}, P_{\xi})$.
- 20 B: Show that you can solve the Hamilton-Jacobi equation, up to quadratures, using separation of variables, as in Lecture 28.⁵ You do not need to worry about finding explicit formulas for the trajectories in terms of the solution to the Hamilton-Jacobi equation.

Problem 3 (Transient forcing): Consider a non-relativistic particle of mass m in the presence of a timedependent potential, described by the Hamiltonian

$$H = \frac{p^2}{2m} + V(x - ut),$$
(7)

where u > 0 is a constant.

15 A: Perform a type-2 canonical transformation (as simple as possible!) to a new coordinate system in which X = x - ut is the new position coordinate. What is the new momentum coordinate P? Show that the new Hamiltonian

$$H' = \frac{P^2}{2m} - uP + V(X) \tag{8}$$

is now time-independent.

10 B: Describe the trajectory of the particle qualitatively, assuming that – in the initial coordinates – as $t \to -\infty$, the particle starts at x = p = 0. Assume that V(X) vanishes for $|X| \ge a$. How independent of the details of V(x) is your answer?

⁴*Hint:* What should $\partial F/\partial P_{\eta}$ be equal to, e.g.?

⁵*Hint:* You may need to multiply the Hamilton-Jacobi equation by a function of ξ and η to make it look separable.

Problem 4 (Symmetries, revisited): Consider phase space \mathbb{R}^{2n} with canonical coordinates (x_i, p_i) . In Lecture 23 we defined a continuous symmetry in Hamiltonian mechanics as an infinitesimal canonical transformation generated by a function F which obeys $\{F(x_i, p_i), H(x_i, p_i)\} = 0$.

- 10 A: Revisit that argument, and point out that there exist systems which in Lagrangian mechanics we would have called symmetric under the infinitesimal canonical transformation generated by $F(x_i, p_i)$, but which we missed in Lecture 23, as $\{F, H\} \neq 0$. Point out a simple concrete example of a system where this happens.⁶ Under our original definition of symmetry in Lagrangian mechanics, what is the new condition that F and H need to obey in order for F to generate a symmetry?
- 10 B: As an alternate perspective, show that Noether's Theorem from Lecture 23 can be correctly restated as follows: if F generates a symmetry, then you can always find a "related" canonical transformation to (X_i, P_i) , such that the new Hamiltonian H' obeys $\{F, H'\} = 0$. In your answer, explain why the construction is not pedantic, but "physical" – in particular, give a sensible physical interpretation to the transformation to new coordinates (X_i, P_i) .

 $^{^{6}}$ *Hint:* Think about all of the examples that we have seen so far in the class.