
PHYS 5210: Graduate Classical Mechanics Fall 2024

Homework 9

Due: November 5 at 11:59 PM. Submit on Canvas.

Problem 1 (Chiral anomaly): On Homework 5, we discussed the chiral anomaly in 1+1 dimensions. In
this problem, we revisit such a system from a Hamiltonian field theory perspective instead. Let ρ(x)
denote the density of a conserved charge, and consider Hamiltonian

H[ρ] =

∫
dxε(ρ(x)). (1)

In the presence of a chiral anomaly, the Poisson bracket1

{ρ(x), ρ(y)} = −∂xδ(x− y). (2)

Assume that integrals over the coordinate x have vanishing boundary terms at ±∞.

A:20 By calculating {
∫

dxf(x)ρ(x),
∫

dyg(y)ρ(y)}, confirm that the Poisson bracket defined by (2) is anti-
symmetric. Why will it also obey the Jacobi identity? Following Lecture 26, evaluate ∂tρ = {ρ,H}
and deduce the Hamiltonian equations of motion.

B:15 To compare with Homework 5, we would like to find a Lagrangian formulation of this problem.
However, due to the derivative in (2), this is not immediately obvious. A convenient trick is to
introduce additional “phase” degrees of freedom φ(x), with Poisson bracket {φ(x), φ(y)} = 0 and

{φ(x), ρ(y)} = δ(x− y). (3)

In other words, phase and density are thus canonical conjugate degrees of freedom. Using this defini-
tion, conclude that the Hamiltonian field theory action takes the form of2

S[ρ, φ] =

∫
dx

[
ρ∂tφ+

1

2
∂tφ∂xφ− ε(ρ)

]
(4)

Show that you can “integrate out” ρ, which now looks like a Lagrange multiplier,3 and that after
doing so, the resulting theory expressed only in terms of φ has the reparameterization symmetry from
Homework 5.

1The function ∂xδ(x) is defined such that
∫

dxf(x)∂xδ(x) = −f ′(0).
2Hint: Notice that the Poisson brackets are not field-dependent. If we were talking about a finite-dimensional phase

space, we could then try to write L = 1
2
ωαβξ

αξ̇β −H. You can try to do the same thing in field theory. Lastly, you may use

the following block matrix identity:

(
0 δ
−δ D

)−1

=

(
D −δ
δ 0

)
.

3Hint: Think about transitioning from Hamiltonian mechanics back to Lagrangian mechanics!
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Problem 2 (Parabolic coordinates): In this problem, we will study a seemingly complicated problem
which can be cleverly solved using the Hamilton-Jacobi method. Consider a system in cylindrical coordi-
nates (ρ, φ, z) with canonical conjugate momenta (pρ, pφ, pz), and Hamiltonian

H =
1

2m

[
p2ρ +

p2θ
ρ2

+ p2z

]
− k√

ρ2 + z2
− Fz. (5)

This models the electron orbiting the proton in a hydrogen atom, placed in a uniform electric field.
It is far from obvious (but we will verify, true) that this problem can be solved by moving to parabolic

coordinates (ξ, ϕ, η):

z =
ξ − η

2
, (6a)

φ = ϕ, (6b)

ρ =
√
ξη. (6c)

A:20 Find expressions for (ξ, η, ϕ) in terms of (ρ, φ, z). Then use a type-2 generating function of the form
F (ρ, φ, z, Pη, Pϕ, Pξ) to find expressions for the new canonical momenta (Pη, Pϕ, Pξ) in terms of the
old (pρ, pφ, pz).

4 Lastly, re-write H in terms of the new coordinates (η, ϕ, ξ, Pη, Pϕ, Pξ).

B:20 Show that you can solve the Hamilton-Jacobi equation, up to quadratures, using separation of vari-
ables, as in Lecture 28.5 You do not need to worry about finding explicit formulas for the trajectories
in terms of the solution to the Hamilton-Jacobi equation.

Problem 3 (Transient forcing): Consider a non-relativistic particle of mass m in the presence of a time-
dependent potential, described by the Hamiltonian

H =
p2

2m
+ V (x− ut), (7)

where u > 0 is a constant.

A:15 Perform a type-2 canonical transformation (as simple as possible!) to a new coordinate system in
which X = x− ut is the new position coordinate. What is the new momentum coordinate P? Show
that the new Hamiltonian

H ′ =
P 2

2m
− uP + V (X) (8)

is now time-independent.

B:10 Describe the trajectory of the particle qualitatively, assuming that – in the initial coordinates – as
t→ −∞, the particle starts at x = p = 0. Assume that V (X) vanishes for |X| ≥ a. How independent
of the details of V (x) is your answer?

4Hint: What should ∂F/∂Pη be equal to, e.g.?
5Hint: You may need to multiply the Hamilton-Jacobi equation by a function of ξ and η to make it look separable.
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Problem 4 (Symmetries, revisited): Consider phase space R2n with canonical coordinates (xi, pi). In
Lecture 23 we defined a continuous symmetry in Hamiltonian mechanics as an infinitesimal canonical
transformation generated by a function F which obeys {F (xi, pi), H(xi, pi)} = 0.

A:10 Revisit that argument, and point out that there exist systems which – in Lagrangian mechanics – we
would have called symmetric under the infinitesimal canonical transformation generated by F (xi, pi),
but which we missed in Lecture 23, as {F,H} 6= 0. Point out a simple concrete example of a system
where this happens.6 Under our original definition of symmetry in Lagrangian mechanics, what is the
new condition that F and H need to obey in order for F to generate a symmetry?

B:10 As an alternate perspective, show that Noether’s Theorem from Lecture 23 can be correctly restated
as follows: if F generates a symmetry, then you can always find a “related” canonical transformation
to (Xi, Pi), such that the new Hamiltonian H ′ obeys {F,H ′} = 0. In your answer, explain why the
construction is not pedantic, but “physical” – in particular, give a sensible physical interpretation to
the transformation to new coordinates (Xi, Pi).

6Hint: Think about all of the examples that we have seen so far in the class.
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