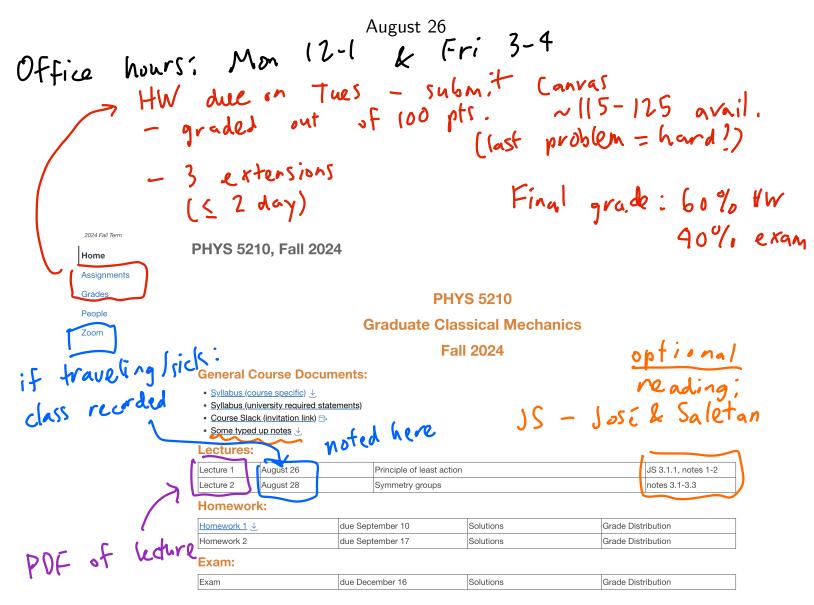
PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 1

Principle of least action



Justify claim:
Justify claim:
Multiver calculus:
Extreme of
$$S(x_{1/}x_{2/}x_{3/...})$$
 are $\frac{2S}{2x_{1}} = \frac{2S}{2x_{2}} = \dots = 0$
if each $\frac{2J}{2x_{3}}$ was discretatization
of EOM near tz.
Locality: $\frac{dS}{dx_{3}} = f_{3}(x_{2/}x_{3/.x_{4}}) = 0$
 $= finite order t - der.$
Locality: $\frac{dS}{dx_{3}} = f_{3}(x_{2/.x_{3/.x_{4}}) = 0$
 $= finite order t - der.$
Locality: $\frac{dS}{dx_{3}} = f_{3}(x_{2/.x_{3/.x_{4}}) = 0$
 $= finite order t - der.$
Locality: $\frac{dS}{dx_{3}} = f_{3}(x_{2/.x_{3/.x_{4}}) = 0$
 $= finite order t - der.$
 $S = F_{3}(x_{2/.x_{3/.x_{4}}) + Sreaf(x_{1/.x_{1/...,x_{4}} \dots)$
re-do arg. for each point: relabel
 $S = \sum_{k} F_{k}(x_{k-1/.x_{k-1}) = \sum_{k} dt \cdot L_{k}(x_{k-1/.x_{k-1}})$
re-do arg. for each point: $f_{k}(x_{k-1/.x_{k-1})$
 $S = \sum_{k} F_{k}(x_{k-1/.x_{k-1},x_{k-1}) = \sum_{k} dt \cdot L_{k}(x_{k-1/.x_{k-1}})$
tow to extremize factional S?
Goal: SS
Goal: SS
 $f_{k}(k) = 0$ at each t if $\frac{d}{dx} S[\overline{x} + \varepsilon x] = 0$.
 $\overline{x} = phys$

$$\begin{aligned} F & \int = \int dt \ L(k,k,j,t) \qquad [for simplicity] \\ \frac{d}{dt} & \int \left[\overline{x} + \xi \widehat{x} \right]_{\xi=0}^{T} = \int_{0}^{T} dt \ \frac{d}{dt} \ L(\overline{x} + \xi \widehat{x}, \overline{x} + \xi \widehat{x}, t) \\ & \int_{\xi=0}^{T} \int_{0}^{T} dt \left[\widehat{x} \frac{\partial L}{\partial x} + \widehat{x} \frac{\partial L}{\partial \widehat{x}} \right] - \eta \quad \int_{0}^{T} dt \ \widehat{x}(t) \frac{\int_{0}^{S}}{\int x(t)} \\ & = \int_{0}^{T} dt \left[\widehat{x} \frac{\partial L}{\partial x} - \frac{d}{\partial t} \frac{\partial L}{\partial \widehat{x}} \right] + \quad \widehat{x} \frac{\partial L}{\partial \widehat{x}} \\ & = \int_{0}^{T} dt \left[\widehat{x} \frac{\partial L}{\partial x} - \frac{d}{\partial t} \frac{\partial L}{\partial \widehat{x}} \right] + \quad \widehat{x} \frac{\partial L}{\partial \widehat{x}} \\ & \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} dt \quad \partial x \\ & \int_{0}^{T} \int_$$