
PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 17

Effective field theory of solids

October 4

In equilibrium / at rest? of
$$\sigma^{1}$$
 σ^{2} σ^{3}
Chunks to specify: where piece at $[x_{0}, x_{0} + \delta E] \times [y_{0}, y_{0} + \delta E] \times [z_{0}, n_{0} + \delta E]$
A nalogy to rigid bary notation: $\sigma^{T}(x, t)$ are fields.
in equilibrium: $\sigma^{T} = S_{1}^{T}x^{i}$ can be chosen.

What are symmetries of EFT?
(space frame) space & time translation: $t \rightarrow t + t$
(space frame) space & time translation: $x_{1} \rightarrow x_{1} + \xi_{1}$
(ij... space frame)
space frame retation: $x_{1} \rightarrow \sigma^{T} + \xi^{T}$
(global motion of abject is fine...)

Ly look at equilibrium: $\sigma^{T} = S_{1}^{T}x_{1}$
(SSB) Spontaneous symmetry breaking: equilibria
not invariant under EOM (d) symbetry.

body frame notation?

Impose body frame isotropy on λ:
"Implicing λ out of tensors that are rotation-invariant":
SIJ is rotation invariant...

$$\lambda IJKL = K SIJ SKL + \mu_1 SIK JIL + \mu_2 SIL SJK$$

However: $\lambda^{IJ}KL$ is contracted into $\partial_j \sigma^K \partial_j \sigma^L - SKL$
symmetric under K ΔL
So λ only depends on " $\mu_1 + \mu_2$ ":
 $\lambda^{IJKL} = K S^{IJ}SKL + \tilde{\mu}[SIK STL + SILSJK]$
"elastic moduli"/ Lamé coefficients...
for isotropic solid, microscopic details "absorbed" into
 $\rho_- K, \tilde{\mu}$.
Theory of elastic solid: non-dissipative solid,
deformed solid can return to eq.