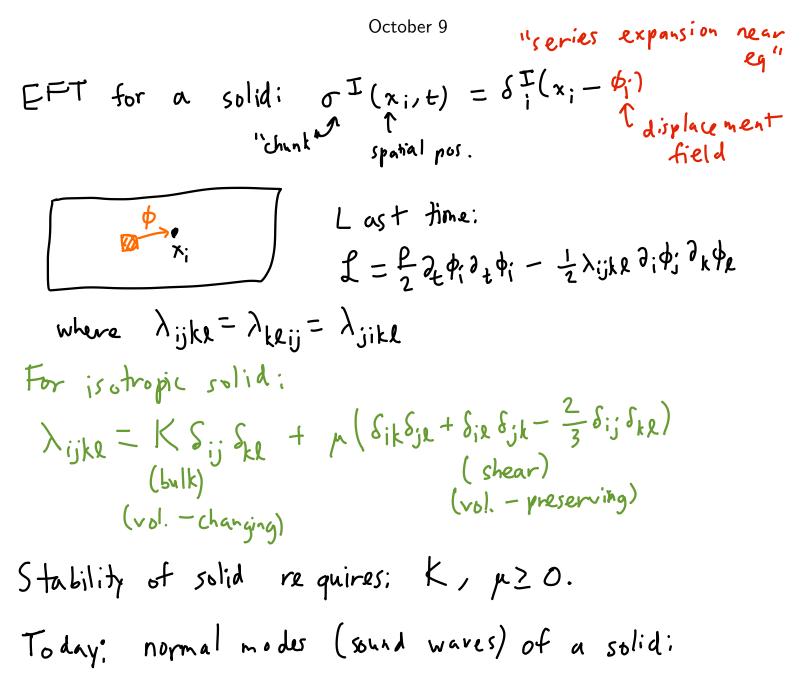
PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 19

Sound waves in solids



EOMs: (Euler-Lagrange):

$$\frac{\delta S}{\delta \phi_{i}} = 0 = \frac{\partial Z}{\partial \phi_{i}}^{D} - \partial_{z} \frac{\partial Z}{\partial (2 + \delta_{i})} - \partial_{j} \frac{\partial Z}{\partial (2 + \delta_{i})} - \partial_{z} (-\lambda_{j} i ke^{\partial} k^{d} e)$$
Plug in plane wave ansatz: $\phi_{i} = \alpha_{i} e^{i(k \cdot X - \omega E)}$
Using not ational invariance: $\bar{k} = \begin{pmatrix} 0 \\ k \end{pmatrix}$ (choosing coord ares aligned v/\bar{k})
 $\partial_{z} \phi_{i} = -i\omega \phi_{j}$ ($\partial_{x}, \partial_{y})\phi_{i} = 0$ $\partial_{z} \phi_{i} = ik \phi_{i}$
Plug in to EOM:
 $0 = \rho w^{2} \phi_{i} - k_{j} \lambda_{j} i ke k_{k} \phi_{k} = \rho w^{2} \phi_{i} - k_{i} k k_{k} \phi_{k} - \mu [k^{2} \phi_{i} + k_{i} k_{j} \phi_{j}]$
 $\rho w^{2} \begin{pmatrix} \alpha_{x} \\ \alpha_{y} \end{pmatrix} = \begin{pmatrix} \mu k^{2} & 0 \\ 0 & (k + \frac{4}{3}\mu)k^{2} \end{pmatrix} \begin{pmatrix} \alpha_{x} \\ \alpha_{y} \\ \alpha_{z} \end{pmatrix}$
transverse waves: $\omega = \pm v_{s} k$
 $\delta \pm k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ (F-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ where $v_{s} = \int \mu$
 $\delta = \mu k^{2} k$ (F-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k$ (S-waves) $\omega = \pm v_{s} k$
 $\delta = \mu k^{2} k^{$

-> in liquid, only have a single sound wave (P)
An isotropic solids:
$$\lambda_{ijkl}$$
 is invariant under point group of
Crystal
Ly mix up sound modes (esp. S waves)
Back to isotropic solid:
 $\sqrt{\frac{K}{\mu} + \frac{4}{3}} = \frac{V_P}{V_S} \ge \int \frac{4}{3}$
For typical crystalline solid: $\sim 50 \text{ mp}$
 $\rho - \frac{M_{ntrom}}{d_{nton}} \sim \frac{10^{-25} \text{ kg}}{(3 \times 10^{-10} \text{ m})^3} \sim 3 \times 10^3 \frac{\text{kg}}{\text{m}^3} = 3 \rho_{4400}$
 $K_{1}\mu \sim \frac{E_{band}}{d_{atom}} \sim \frac{10^{-18} \text{ J}}{(3 \times 10^{-10} \text{ m})^3} \sim 3 \times 10^{10} \frac{J_{m3}}{m^3}$
 $V_S^2 \rho = \mu$
(Linding E of hydrogen)
 $V_S^2 \rho = \mu$
Combine: $V_S \vee V_P \sim \int \frac{3 \times 10^{10}}{3 \times 10^{3}} \frac{\text{m}}{\text{s}} = 3 \frac{\text{km}}{\text{s}}$
 $\sim 3 \times 10^5$ atm. (of pressure)
 $V_S^2 \rho = \mu$
Combine: $V_S \vee V_P \sim \int \frac{3 \times 10^{10}}{3 \times 10^3} \frac{\text{m}}{\text{s}} = 3 \frac{\text{km}}{\text{s}}$
 $\sim 10 \times 2 \frac{\text{speed of sound}}{(n \text{ air})^3}$
Application (qualitative) to earthquakes: $\frac{10 \times 10^{-18} \text{ J}}{10^{-3} \text{ s}} \frac{10 \times 10^{-3} \text{ s}}{10^{-3} \text{ s}}$

At surface of solid: Boundary conditions on $\varphi_x, \varphi_y, \varphi_z$ [usually: "no-stress": $T_{zj} = 0$] $V_s \sqrt{k_x^2 + k_z^2} = V_p \sqrt{k_x^2 + k_z^2}$. Surface waves also exist! Most dangerous \rightarrow bulk S& P sound modes: amplitude $\sim V_r$: Power \sim amplitude² Power \sim Area \sim const.

) surface: Power x (2mr) ~ const. G amplitude ~ 1/1r.