PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 20

Hamiltonian mechanics

October 11

Why Lagrangian nechanics?
Haniltonian mechanics.
(1) deal w/ new
configuration spaces
(rigid body dynamics)
(2) easy to incorporate
Symmetry
(3) Noether's Thm
Difference? explicitly first order equations...
Coordinates
$$\xi^{K}$$
 on phase space, and but better?
 $\xi^{K} = f^{K}(\xi)$
Today: deducing something Hamiltonian
from Lagrangian mechanics
(1) deal w/ new
(1) phase space
(bit more ubstract)
(2) also easy here.
AND manifest symmetry
structure (lex 21-22)
(3) Noether's Thm
(3) symmetry (trad only if)
Difference? explicitly first order equations...
 $(\text{sordinates } \xi^{K} \text{ on phase space, and but better?}$
 $\xi^{K} = f^{K}(\xi)$
 $f^{K} = -\frac{g^{K}}{2}$

$$S[x_i] = \int dt \ L(x_i, \dot{x}_i) \qquad (first darivatives only!)$$

$$\frac{SS}{Sx_i} = 0 = \frac{\partial L}{\partial x_i} - \frac{d}{dt} \left[\frac{\partial L}{\partial \dot{x}_i} \right] \qquad 0 = \frac{\partial L(wp^3!}{\partial x_i} + F_i \\ Define as P_i \qquad 0 = \frac{\partial L(wp^3!}{\partial x_i} + F_i \\ first order ?$$
Now: $\dot{x}_i = f(x, p)$? w/ phase space (xir pi)...
Stratugy to charge vans from (\dot{x}_i/x_i) to (p_i/x_i) :
Legendre transformation.
 $L(x_i, \dot{x}_i)$
 $\int dL = \frac{\partial L}{\partial x_i} dx_i + \frac{\partial L}{\partial \dot{x}_i} d\dot{x}_i = \frac{\partial L}{\partial x_i} dx_i + P_i d\dot{x}_i$
 $\int d(L-p_i\dot{x}_i) = \frac{\partial L}{\partial \dot{x}_i} dx_i - \dot{x}_i dp_i$
 $= d(p_i\dot{x}_i) - \dot{x}_i dp_i$
 $H(x_i/p_i) = -\frac{\partial H}{\partial x_i} dx_i - \frac{\partial H}{\partial p_i} dp_i$
 $\frac{\partial L}{\partial x_i} = [\dot{p}_i = -\frac{\partial H}{\partial x_i}] \qquad \dot{x}_i = \frac{\partial H}{\partial p_i}$
So, if we invert" \dot{x} (express $\dot{x}(x,p)$ instead of $p(\dot{x},\dot{x})$),
then by defining $H = p_i \dot{x}_i - L$... first-order equations?
Recap: start w/ Lagrangian $L(x_i, \dot{x}_i)$:
() Define $p_i = \frac{\partial L}{\partial \dot{x}_i}$ (no Noether)
 Λ "aroonical momentum"

Hamiltonian ... obtain by invert $P_{i} = \frac{\partial L}{\partial x_{i}}(x, \dot{x})$ (2)ر x (×, p) $H = P_i \dot{x}_i - L$ $H = p_i \dot{x}_i(x,p) - L(x, \dot{x}(x,p))$ (3) Euler-Lagrange -> Hamilton's equations: first-order $\dot{x}_{i} = \frac{\partial H}{\partial p_{i}}$ & $\dot{p}_{i} = -\frac{\partial H}{\partial x_{i}}$ Define: phase space: coordinates (xi, p;) ER²ⁿ (phase space) if x; E R (config. sp.) Example, harmonic oscillator, $L = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}kx^{2}$ $(\mathbf{J} \mathbf{p} = \frac{\partial \mathbf{L}}{\partial \mathbf{x}} = \mathbf{m} \mathbf{x}$ (2) $\dot{x} = \frac{p}{m}$ and $H = p\frac{p}{m} - \frac{m}{2}(\frac{p}{m})^2 + \frac{k}{2}x^2 = \frac{p^2}{2m} + \frac{kx^2}{2}$ Combine to reproduce E-L equations: $\dot{p} = \frac{d}{dt}(m\dot{x}) = m\ddot{x} = -kx \longrightarrow \frac{d}{At} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x}$ From this perspective, nothing new? Advantage: dynamics as flow on phase space! E trace out trajectory thru phase space. y drawn "Hamiltonian vector field" which generates time-translation" s=(x, p) in phase space.

