PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 22

Canonical transformations

October 16 What is a symmetry in Haniltonian mechanics? Lec 23: is a canonical transformation (CT) that leaves H invariant. ?? Goal for today. CT = a coord transform that leaves Poisson brackets invariant in Ham mechanics, PBs conceptually independent of H. PBs are more important. independent Start vel coords $\binom{x_i}{p_i} \rightarrow 3^{\alpha}$. CT is $3^{\alpha} \rightarrow \gamma^{\alpha}(3)$ s.t. $33^{4}, 3^{8}$ = $[\eta^{*}(3), \eta^{P}(5)]$ For now: "canonical" coordinates: $2x_i, x_j = 2p_i, p_j = 0$ Zxirpj Z= Sij. canonical conjugates.

So
$$(T: p^{\alpha} = \begin{pmatrix} X_{i} \\ P_{i} \end{pmatrix})$$
: $\{X_{i}, P_{j}\} = S_{ij}$
 $\{X_{i}, X_{j}\} = \{P_{i}, P_{j}\} = 0$.
Note: in new coordinates, Haw's eq's "look same":
 $F = \{F, H\}$ (if F t-ind.)
 $G = \frac{2F}{2x_{i}} \frac{2H}{2p_{i}} - \frac{2F}{2p_{i}} \frac{2H}{2p_{i}}$ or $= \frac{2F}{9X_{j}} \frac{2H}{9P_{i}} - \frac{2F}{2P_{i}} \frac{2H}{2p_{i}}$
 $F = X_{i}$: $X_{i} = \frac{2H}{2P_{i}}$ and $P_{j} = -\frac{2H}{9X_{i}} = \frac{\pi}{1+e^{-\pi}} \frac{\pi}{H(\alpha X, P_{i}, P(X_{i}, P))}$
 $F = X_{i}$: $X_{i} = \frac{2H}{2P_{i}}$ and $P_{j} = -\frac{2H}{2X_{i}} = \frac{\pi}{H(\alpha X, P_{i}, P(X_{i}, P))}$
 $F = X_{i}$: $X_{i} = \frac{2H}{2P_{i}}$ and $P_{j} = -\frac{2H}{2X_{i}} = \frac{\pi}{H(\alpha X, P_{i}, P(X_{i}, P))}$
 $F = X_{i}$: $\{X_{i}, P\} = \{x_{i}, P\} = \{x_{i}, P\} = \frac{2}{2\pi}$ ($M = \frac{2}{2} = \frac{2}{2\pi}$ ($M = \frac{2}{2} = \frac{2}{2} = \frac{2}{2\pi}$ ($M = \frac{2}{2} = \frac{2}{2} = \frac{2}{2} = \frac{2}{2}$
 $F = P$: $\{X_{i}, P\} = \frac{2}{2} = \frac{$

Now:
$$[\partial^{\alpha}, S^{\beta}] = \frac{\partial \Phi^{\alpha}}{\partial S^{\gamma}} \sqrt{\partial^{\beta}} \frac{\partial S^{\beta}}{\partial S^{\beta}} = \frac{\partial \Phi^{\alpha}}{\partial r_{1}} \frac{\partial S^{\beta}}{\partial P_{1}} - \cdots$$

 $= \partial_{\gamma} \Phi^{\alpha} \sqrt{r^{\beta}} S^{\beta}_{S} = \sqrt{\partial^{\beta}} \partial_{\gamma} \Phi^{\alpha}$
So: $D = \sqrt{\partial^{\beta}} \partial_{\gamma} \Phi^{\alpha} - \sqrt{r^{\alpha}} \partial_{\gamma} \Phi^{\beta}$
Ly multiply by $\omega_{\beta\beta} \omega_{\alpha\alpha'}$ (lower indices using ω):
 $D = \delta^{\gamma}_{\beta'} \partial_{\delta} (\Phi^{\alpha} \omega_{\alpha\alpha'}) - \delta^{\gamma}_{\alpha'} \partial_{\delta} (\Phi^{\beta} \omega_{\beta\beta'}) \rightarrow \frac{\partial = 2\rho \partial_{\alpha'} - \partial_{\alpha'} \Phi_{\beta'}}{= \Theta_{\beta'}}$
Moth fact: (itelmholtz decomposition''/ dR cohomology): function
on phase space R^{2n} all solves are $\Phi_{K} = \partial_{K} F$
So: all infinitesimal CTs: $S^{\alpha} \rightarrow S^{\alpha} + \epsilon \sqrt{r^{\beta}} \partial_{\beta} F$
Every function generates CT F. (And there aren't any others)
Example 2: Take phase space R^{2n} momentum P_{1} :
 $S^{\alpha'} \rightarrow S^{\alpha'} + \epsilon \frac{2S^{\alpha'}}{p_{1}} P_{1}^{3}$
 $\binom{\kappa_{1}}{p_{1}} \rightarrow \binom{\kappa_{1}}{p_{1}} + \epsilon \binom{2\kappa_{1}}{p_{1}} P_{1}^{3} = \binom{\kappa_{1} + \epsilon^{\frac{1}{2}}}{p_{1}}$
Translation is generated by momentum.
Example 3: rotation in phase space R^{6} (3 spatial dim).
Last fime: $\frac{1}{2}\kappa_{1}$, $L_{1}^{3} = -\epsilon_{1}jk^{\kappa_{K}}$ and $\frac{2}{2}r_{1}$, $L_{2}^{3} = -\epsilon_{1}jk^{\rho_{K}}$.

Clain: Lj generates rotation around j-axis.
Example:
$$j=2$$
:
 $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x+ey \\ y-ex \end{pmatrix}$ $\{x, L_{2}\}=-\epsilon_{xey}x_{y}=-(-1)y$
nomentum rotates u' same orientation!
Example 4: time-translation.
Recall: $F = 2F$, H} (assuming F(5))
G or: $F(t=\epsilon) = F(0) + \epsilon F(0) + \cdots = F(0) + \epsilon 2F$, H}
So H generates $CTs \rightarrow \begin{pmatrix} x \\ p \end{pmatrix} \rightarrow \begin{pmatrix} x(\epsilon) \\ p(\epsilon) \end{pmatrix}$
Keey generating CTs :
 $s^{A} \stackrel{cT}{\rightarrow} s^{A}(t=\epsilon) \stackrel{cT}{\rightarrow} s^{A}(t=2\epsilon) \stackrel{cT}{\rightarrow} \cdots \stackrel{cT}{\rightarrow} s^{A}(\frac{t}{\epsilon} \cdot \epsilon) = s^{A}(t)$
Define "adjoint action": $ad_{F}g = 2F_{7}g = -2g_{7}F$.
Formally solve Ham's eqs: $s^{A}(t) = e^{-t\cdot ad_{H}}s^{A}$
 $\int \frac{d}{dt}s^{A}(t) = -ad_{H}(e^{-t\cdot ad_{H}}s) = 2s^{A}(t), H$.
Ana (egg to QM: Heisenberg picture: for any operator A,
 $A(t) = e^{iHt/k}A = ^{iHt/k}A$.
If we defined $ad_{H}^{A} = [H, A]$, (matrix commutator)
Then $A(t) = e^{itg_{T} - ad_{H}}A$