PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 24

Symplectic geometry

October 21

Hamiltonian mechanics so far: () start in/ phase space R²ⁿ: (x1, ..., xn, p1,..., Pn) Define Poisson Bracket (symplectic form): {xi, p;}= Sij (3) Define time evolution as CT generated by Hamiltonian H: $S = \left(dt \left[p; \dot{x}_{i} - H \right] \right)$ In Lagrangian mechanics, could also study config spaces beyond R". What about phase space beyond R"? Hamiltonian mechanics refineable on symplectic manifold (M, w): -> M is 2n-dim manifold (smooth space, "calculus OK") -) w is the symplectic form; w is closed: Wap = - WBa is invertible dawpy + dowba + dowd = 0 Both M & w newssary. Why w closed /invertible? Ly intuitive: Poisson bracket exists: { 3x, 3B }= V&B.

Proposition: if w is closed and w⁻¹ = V, then
V oleys Ja cobi identify.
Example 1:
Lagrangian system vil S configuration space:
$$L = \frac{1}{2}\dot{\vartheta}^2$$

Legendre transform?
 $P_{\vartheta} = \frac{\partial L}{\partial \vartheta} = \dot{\vartheta}$ and $H = P_{\vartheta}\dot{\vartheta} - L = \frac{1}{2}P_{\vartheta}^1$ $\dot{\vartheta}$ is unbounded
Thick about coords: $\theta \sim \theta + 2\pi$ P_{ϑ} unconstrained
(angular variable)
Resulting phase space = cylinder (S¹ XR)
Formuly: $[\vartheta, P_{\vartheta}] = 1?$
More general: Lagrangian system has canfiguration space X.
 $L_{\vartheta} = L(x_i, x_i)$ where $x_i \in X$
Phase space M: $T^*X = cotangent bundle
 $[x_i \in X, p_i \in \mathbb{R}^n] \in T^*X$
Like cylinder: finding nice global courds can be hard.
(PBs $\{x_i, p_i\} = Sij$ may not wake sense in one coard
System)
Locally: nice canonical coards always exist. (Darboux S Thn)
Example 2: T^*S^n from symplectic reduction
 $T_{n-ain sylere}$$

We can ended Sⁿ in Rⁿ⁺¹:

$$I = x_0^{n} + x_1^{1} + \dots + x_n^{2}$$
S = $\int dt \left[L(n_i x_i^{n}) + \lambda [x_0^{1} + x_i^{2} + \dots + x_n^{2} - 1] \right]$
Legendre transform?
F
Yes! Dirac bracket prescriptions
Lad covered here...)
We can guess the output via symplectic reduction.
Start w/ $(x_{ir}, p_i) \in \mathbb{R}^{2n+2}$; reduce by F.
O hestrict to points where F=0.
D latentify all pts $3^{n}(s) = e^{s \cdot adF} 5^{n}$ as a single point.
Collapse $\frac{d 5^{n}}{ds} = \frac{2}{2}F_{i} 5^{n} \frac{3}{2}$:
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac{3}{2} = 2x_{i}$
 $\frac{d p_{i}}{ds} = \frac{2}{2}x_{i}^{2}$, $p_{i} \frac$

HWB: you an also find compact symplectic manifolds
$$(S^2)$$

b beyond (usual) Lagrangian mechanics.
We can also non-trivial symplectic firms on simple phase spaces...
Recall: $S = \int dt \left[p_{i}x_{i} - H\right]$
rewrite: $\lambda_{x} \stackrel{e}{\propto} x$
 $\lambda_{x} = \left(\frac{p_{i}}{0}\right)_{p}$
Symplectic pitential $(\lambda_{xy} = p_{i})$
 $\lambda_{p_{i}} = 0$).
Generalization? $S = \int dt \left[\lambda_{x} \stackrel{e}{\propto} x - H\right]$.
Euler-Lagrange equations: (Assume $\vartheta_{t}\lambda_{x} = 0$)
 $0 = \frac{\delta S}{\delta S^{2}} = \left((\partial_{x} \lambda_{p}) \stackrel{e}{S}^{p} - \frac{\partial H}{\partial S^{k}}\right) = \frac{d}{dt}\lambda_{x}$
 $= \vartheta_{x} \lambda_{p}^{p} - \vartheta_{a} H - \partial_{p} \lambda_{x} \stackrel{e}{S}^{p}$
Define $\omega_{xp} = \vartheta_{x} \lambda_{p} - \partial_{p} \lambda_{x}$ as symplectic form:
 $\frac{\partial dH}{\partial t} = \omega_{xp} \stackrel{e}{S}^{p}$ $\left(dH = \iota_{x}\omega\right)$
If we can invert ω : $\omega^{-1} \rightarrow V \stackrel{aB}{\rightarrow} = \frac{2}{5}^{a}, \frac{5}{5}^{a} \stackrel{e}{S}$ (locally)
 $\stackrel{e}{S}^{k} = V \stackrel{aB}{\alpha} \partial_{p} H = \frac{2}{5}^{a}, H^{2}$
If we can't invert ω : some S^{a} are Lagrange multipliers...
Check: all ω derived in this way are closed:
 $\vartheta_{y} \omega_{xp} + \vartheta_{x} \omega_{py} + \cdots = \vartheta_{y}(\vartheta_{x} \lambda_{p} - \partial_{y} \lambda_{y}) + \frac{1}{\partial u} (\vartheta_{p} \lambda_{p} - \partial_{y} \lambda_{p}) + \cdots = 0$.

Example 3: phase space
$$\mathbb{R}^{2}$$

 $S = \int dt \left[(p + p^{3}) \dot{x} - H(x,p) \right]$
 \downarrow symplectic potential: $\lambda_{x} = p + p^{3}$ $\lambda_{p} = 0$
 $symplectic form: \omega_{px} = \partial_{p}\lambda_{x} - \partial_{x}\lambda_{p} = 1 + 3p^{2}$
Hamilton 1s equations:
 $\frac{\partial H}{\partial x} = \omega_{xx} \dot{x} + \omega_{xp} \dot{p} = -\omega_{px} \dot{p} = -(1 + 3p^{2}) \dot{p}$
 $\frac{\partial H}{\partial p} = \omega_{px} \dot{x} = (1 + 3p^{2}) \dot{x}$