PHYS 5210 Graduate Classical Mechanics Fall 2024

Lecture 3

Noether's Theorem

August 30

Symmetry = a coordinate transform that leaves EOM invariant: $(x_{i},t) \rightarrow (\overline{x}_{i}(x,t), \overline{t}(x,t))$

Continuous symmetry generated by $\hat{x}_i = x_i + \xi \hat{X}_i(x_i t) + \cdots \quad \hat{t} = t + \xi T(x_i t) + \cdots$ $0 = \dot{\Phi} + \dot{T}_{L} + T \frac{\partial L}{\partial t} + \chi_{i} \frac{\partial L}{\partial \chi_{i}} + \frac{\partial L}{\partial \dot{\chi}_{i}} (\dot{\chi}_{i} - \dot{\chi}_{i} \dot{T})$ T L→ L+ ε € is physically equivalent (until QM) Noether's Thm: continuous symmetry > conservation law. "Noether charge" $Q = T(L - \dot{x}; \frac{\partial L}{\partial \dot{x};}) + X; \frac{\partial L}{\partial \dot{x};} + \overline{P}$ On physical trajectories $\dot{Q} = 0$. Recall: $X_i \frac{\partial L}{\partial \dot{x}_i} = \hat{Z} X_j \frac{\partial L}{\partial \dot{x}_i}$ $Proof; \frac{dQ}{dt} = \frac{d\Phi}{dt} + T(L-\dot{x}_i \frac{\partial L}{\partial \dot{x}_i}) + T(\frac{\partial L}{\partial t} + \dot{\chi}_i \frac{\partial L}{\partial \dot{x}_i} + \dot{\chi}_i \frac{\partial L}{\partial \dot{x}_i})$ $-\frac{\chi}{2\chi_{i}} - \frac{\chi}{2\chi_{i}} - \frac{\chi}{2\chi_{i}} - \frac{\chi}{2\chi_{i}} + \chi_{i} \frac{\partial L}{\partial \chi_{i}} + \chi_{i} \frac{\partial L}{\partial \chi_{i}} = 0.$

Remember: physical traj:
$$\frac{SS}{Sr_i} = 0 \rightarrow \frac{2L}{2r_i} = \frac{d}{dt} \frac{2L}{2\lambda_i}$$

Key: symmetry "easily" implemented in Lagrangian mech...
AND Noether's Thm: symmetry = conservation law
night language for effective theory.
Example 1: "Ball" in "empty space"
(0°°°) $\int R$
(1) describe large length
1) describe large length
1

$$p = \frac{2L}{2\pi} \rightarrow m\dot{z} \qquad EOM: m\ddot{z} = 0 \quad ("Newton")$$

Example 2: Earth around Sun
$$V(2) \text{ interested in overall}$$

$$V(2) \text{ interested in interested in interested in overall interested in overall interested in overall interested in overall interested in interested intereste$$

Switch to polar coordinates:
$$\chi = rcost$$

 $y = rsint$
Rotational sym: $\theta \rightarrow \theta + const.$ (translation in θ)
Find $L = L(r^2, n^2 + r^2 \dot{\theta}^2, 2r \dot{r}_{\mu} r^4 \dot{\theta})$
drop for easy ... NOT good idea
Slow motion: Series expand in $r^2 + n^2 \dot{\theta}^2$:
 $L = \frac{m}{2}(r^2 + n^2 \dot{\theta}^2) - V(r) + \cdots$ (time -reveau)
 $T m = mas''$ Cuipatatial energy even $\frac{d}{dt}$)
Angular momentum: $M = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta} = const.$
 $\frac{\delta S}{\delta r} = 0 = -\frac{dV}{dr} + mr \dot{\theta}^2 - mr'$
 $= -\frac{d}{dr}(V(r) + \frac{M^2}{2mr^2}) - mr'$
Tok b/c EOM, NOT Lagrangian
Interesting config space is r only.
"Central force problem"

٦,