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2. Kinetic theory of transport
2.1) Boltzmann equation for a particle
Reference: Rammer, “Quantum transport theory” (2004)
Consider a Hamiltonian for a non interacting particle in one dimension (it is straightforward to generalize to 
higher dimensions)

But this is not necessarily so enlightening as is.  To try and get somewhere a little more physical we will introduce the 
Wigner transform

To calculate the evolution of this function we will do so in a slightly convoluted fashion 
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So convolutions become replaced with this Moyal star product.  
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Now let’s understand what the Hamiltonian does...

We can finally evaluate the time evolution of our f

At leading order this looks like 

This is the kinetic or Boltzmann equation for a non interacting system.  It can be shown to also hold for a collection of 
non interacting degrees of freedom and also generalizes in an obvious way into higher dimensions. 
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2.2) Particle in a random potential

Now we turn on a random potential V(x) and study the problem in higher dimensions

Suppose g is very small, we can try to perturbatively integrate it out
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In order to compare with Fermi’s golden rule, consider ...

Going back to real space and defining a transition rate 

The right hand side of this equation can be interpreted as the relative rate of scattering in vs scattering out particles. 
The scattering rate is given by Fermi’s golden rule in the born approximation, which makes sense given we are looking 
at large length scales compared to quantum wavelengths. 

2.3) Electrical conductivity from impurities 
Reference: Ziman, “Electrons and phonons” (1960)

Now let us use the Boltzmann equation to start thinking about transport calculations.  We start by thinking 
about electrical transport for electrons. 
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We may as well abstract to the following;
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Our first honest transport calculation!  A few key points.  Firstly the Fermi factor restricts the dynamics to close to the 
Fermi surface.   Secondly, W was related to a scattering rate, so indeed conductivity goes as a scattering time. The 
weaker the scattering, the stronger the conductivity.  

This result was general but let’s now return to the special case of impurity scattering.  If impurities are randomly placed 
point potentials, then
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This is a classic result — for short range interacting impurities, conductivity controlled by a single time scale and the 
geometry of the Fermi surface.   For a typical metal, the Fermi temperature is absurdly high, so neglecting thermal 
smearing of the Fermi surface is certainly justified.   But in low density semiconductors this need not be the case. 
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So in this simplifying limit we essentially recover the Drude formula

2.4) Kinetic transport formalism

Next our goal is to essentially just recast some earlier derivations in a more formal framework, which will 
greatly aid as we start to turn on more complicated scattering mechanisms ...
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As expected, the temperature gradient drives a heat current.  We immediately generalize the previous arguments and 
obtain 

There are a few more universal facts we will learn independent of W.  First, let’s understand positivity of W...
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Next, we discuss a very useful variational principle...
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This is a great example of a theorem which has a very important physical loophole.  We will see later in this course how 
adding a scattering mechanism can decrease the resistivity, simply because this kinetic formalism need not be 
applicable.
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2.5) Thermal transport of electrons at low temperatures 

We now return to a practical problem — given impurity scattering, what is the thermoelectric conductivity 
matrix? 

(QxlwYQxt-fdffqafjffvilplvjlplldpt.nl' Timpleh
e same calculation

a s before, but keep E-dependence...- Identity: f¥E)= Sle-µ) + TRIS
" (e-

a) t OCT'T

(QxlwtlQD-ffffqdvivjeimpfsle.AT#jIs4e-Ht-Jle-
H2
•

I T
2

I K x x " ¥ Exeo
e t

(JxlW-'lQ×)=f¥¥µv;v; temp [Kent-"¥s"leak. -Ile-H

"¥11,14, she-a)a;vjTimp="}T"FI e

xnxx.it#ed&Mott'sLa
wKxx=Ixx-
TIxI*=k*tOCT3), s o

K××=t¥¥ Wieidlhann-Franzlaw-
Defining

Lot'¥, experimentalists usually report L=¥, o r §



2.6) Electron-electron scattering

Now we turn to our first interaction effect — what happens if there are electron-electron interactions?  The 
answer is that we need to add a new term to W, the collision integral...

A heuristic cartoon.  Consider a sea of thermal electrons, and a single excitation moving around in this 
background...

For transport, we only need to evaluate the linearized collision integral
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In general, evaluating this object is quite nasty, but the temperature dependence is universal in a Fermi liquid
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We conclude that the electron-electron scattering rate is T^2. Note that in 2d there is a much richer story about the 
structure of the collision integral that we won’t discuss here....
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Now, it is tempting to generalize our previous argument about disorder scattering, simply replacing the impurity 
scattering time with this T^2. But there is a very important caveat....let’s compute the decay time for momentum.

Most metals have a large Fermi surface because each atom is contributing about 1 electron to the conduction band.  
So umklapp is usually there.  But in semiconductors (GaAs) or graphene it is possible to have such a small Fermi 
surface that umklapp can be neglected
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2.7) Thermoelectric transport with a small Fermi surface

In this section we explore what happens if there is a large discrepancy between umklapp and momentum 
conserving scattering rates.   For simplicity, we consider a model with a circular Fermi surface. 
Reference: 1804.00665

Note that in any Fermi liquid with a symmetry group G, the collision integral cannot mix sectors of different 
symmetry.  So with rotational invariance we can restrict our study to 
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Now we need to estimate the form of the collision integral.  First we start with electron-impurity scattering
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Now we turn to electron electron scattering, which we assume is momentum conserving for simplicity...
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To understand these equations we first analyze them in the limit of negligible e-e scattering...

Now let us turn to the limit where e-e scattering is extremely large
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To understand this result, let us consider the following cartoon model, attempting to generalize the Drude model to 
thermoelectric transport 

The Wiedemann-Franz and Mott laws thus have a simple breakdown in the presence of momentum conserving 
interactions.  We will later call this interaction dominated regime “hydrodynamic transport”
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One more useful thing is to determine the experimentalist’s thermal conductivity:

Momentum conserving interactions suppress the experimentalist’s thermal conductivity while they do not strongly affect 
the electrical conductivity.  This is a key result.  Especially at low temperatures this is a compelling transport signature for 
strong electron interactions and has been verified recently in a number of different compounds.  But I caution that the 
story can be different for more complicated Fermi surfaces, and with umklapp etc...

2.8) Phonon-impurity scattering 

Now we turn to the kinetic theory of thermal transport for phonons.  Things are rather similar so I will try to 
not belabor the points so much.  If the phonons are non-interacting and scattering off of impurities, then the 
same form of streaming and collision operators hold as for electrons, and all that changes is equilibrium 
distribution function...

In the presence of impurities, W is given by the same formula!  Just need to change the equilibrium distribution in the 
inner product.  Let’s assume the disorder is relatively short range and “homogeneous” analogous to our discussion of 
electronic transport.
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2.9) Phonon-phonon scattering

We continue our discussion of phonon contribution to thermal conductivity, now turning to the possibility of 
phonon umklapp scattering.

For simplicity let’s just go directly to our variational estimate:

Where the derivation of this result is similar to that for electron electron scattering.
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I

H=§wga
atgaag, + 2%9,K) af,µ , apa , t t h e t - - -

-

I ⇐ 2 phonon process, arising
from 3rdorder

corrections i n t h e potential energy of crystal

(oIIW I I ) =pfdf.pt#flp1fCpKltflp+p'DfoIlpltoIlp4-
oIlietpD B B B

x 10/2

For phonon scattering o n e expects 104,192,9371! 191192119,1

At high temperatures, FB4) n Ity. For
a "typical" I

G INE I if'uii¥¥84,-a,-911,191¥, Etta}-#of-¥412

Assuming w n Vpng fo r acoustic modes & w n w o t . . . for optical modes:

( E h r l e ) n-12

Set I l a n p



This identity is general

At low temperatures only umklapp is present, because there is no Fermi surface for bosonic phonons.   So we expect

Like for electrons, impurity scattering will dominate at low temperatures.  At intermediate temperature scales there 
can be a very nasty interplay of different effects of umklapp, band structure etc.  there is not a clean theory here 
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2.10) Electron-phonon scattering 

In this part we now consider the electron phonon scattering integral. 

This result can be derived analogously to earlier results, and so we state it without proof. 

We now make “Bloch’s ansatz” which is that the phonon distribution is in equilibrium.  We will return to this assumption I 
a bit.  So

Let’s begin by talking only about the acoustic phonons. Another reasonable assumption is that the phonon energy 
scale at a given momentum is very small compared to the electron energy, since in a typical metal

Electrons will stay close to the Fermi surface
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Integrate out Kii.
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Surprisingly, that T^5 is not easy to observe in an actual metal.  The problem is that you have to be at extremely low 
temperatures where impurity scattering dominates.  Because at higher temperatures...

By room temperature the phonon induced resistivity of most metals will be linear in temperature.

Lastly let’s briefly mention optical phonon contributions.  These are not usually so relevant for real metals 
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2.11) Phonon drag 

Now let us relax Bloch’s assumption that the phonons are in thermal equilibrium.  In general the problem 
simply becomes a more involved variational one, etc...so let’s focus on a simple example where we have 
electron-impurity scattering, momentum conserving electron phonon scattering, and momentum relaxing 
phonon scattering

(glwly) = (ElweilI) + (01%10)+41Weply)
=/'¥f¥at:#ski,-canteen-Enid'tY%

¥÷E¥) #know."
+ 5%19%2149%11128
41-E,-g) Hey,-§-up)f,(g)fewHARRIED-91570412

Trial function: It#=kx, 0(g) = oh, x a :

Cylwl41=51391Weil13×4+43×441139) i

+ fddkidd
E,

dig

u p
11124-a)292 x . . . . .

-
=L'- a 4 CP:

lwe.ph/
PfykpoikiYasti9ecoEn!

Ra, E main {f¥¥= mainftp.j?ExtIEEwemP1

= W I g h l P x ) -Pei t pBloch {pen,µeµlP4)t4PxlWpn#



The Bloch resistance is thus reduced by the relative momentum relaxation rate of phonons to umklapp or impurities, 
relative to the momentum conserving rates, weighed by number of excitations involved in each....

This can get rather messy, and in many metals Bloch’s approximation is reasonable.  But at very low temperatures it 
may be the case that phonon umklapp and impurity scattering are both extremely suppressed in which case phonon 
scattering simply drops out of the expression for electrical resistance!


