Physics 7450, Fall 2019
2. Kinetic theory of transport

2.1) Boltzmann equation for a particle
Reference: Rammer, “Quantum transport theory” (2004)
Consider a Hamiltonian for a non interacting particle in one dimension (it is straightforward to generalize to

higher dimensions)
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But this is not necessarily so enlightening as is. To try and get somewhere a little more physical we will introduce the
Wigner transform
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To calculate the evolution of this function we will do so in a slightly convoluted fashion
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So convolutions become replaced with this Moyal star product.
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Now let’s understand what the Hamiltonian does... %9 V\j H = €<}9> 1'/\/6%/ S
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We can finally evaluate the time evolution of our f
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At leading order this looks like
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This is the kinetic or Boltzmann equation for a non interacting system. It can be shown to also hold for a collection of
non interacting degrees of freedom and also generalizes in an obvious way into higher dimensions.
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2.2) Particle in a random potential

Now we turn on a random potential V(x) and study the problem in higher dimensions
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Suppose g is very small, we can try to perturbatively integrate it out
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Going back to real space and defining a transition rate Vﬂ/ ﬁ )Oq cko i
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The right hand side of this equation can be interpreted as the relative rate of scattering in vs scattering out particles.
The scattering rate is given by Fermi’s golden rule in the born approximation, which makes sense given we are looking
at large length scales compared to quantum wavelengths. 4[
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2.3) Electrical conductivity from impurities
Reference: Ziman, “Electrons and phonons” (1960)

Now let us use the Boltzmann equation to start thinking about transport calculations. We start by thinking
about electrical transport for electrons.
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Our first honest transport calculation! A few key points. Firstly the Fermi factor restricts the dynamics to close to the
Fermi surface. Secondly, W was related to a scattering rate, so indeed conductivity goes as a scattering time. The
weaker the scattering, the stronger the conductivity.

This result was general but let’s now return to the special case of impurity scattering. If impurities are randomly placed

point potentials, then
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1 ) —Bj More generally we will often
\5 assume the collision integral
has this simple structure of just
_ multiplying by a time scale (up
Ok’%i’h’ at SFateg to som}é zgeroymodes). This is
called the relaxation time
approximation

This is a classic result — for short range interacting impurities, conductivity controlled by a single time scale and the
geometry of the Fermi surface. For a typical metal, the Fermi temperature is absurdly high, so neglecting thermal
smearing of the Fermi surface is certainly justified. But in low density semiconductors this need not be the case.
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So in this simplifying limit we essentially recover the Drude formula

2.4) Kinetic transport formalism

Next our goal is to essentially just recast some earlier derivations in a more formal framework, which will
greatly aid as we start to turn on more complicated scattering mechanisms ...
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As expected, the temperature gradient drives a heat current. We immediately generalize the previous arguments and
obtain
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There are a few more universal facts we will learn independent of W. First, let’s understand positivity of W...
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Next, we discuss a very useful variational principle...

Theorep s i 6:@\///& Tl ¢
A

Dok w \&E> gﬁ b sm L EATED)

[Cﬂ” &)]W(@ N ohe H@?@[{»@],
T

\W@\CW& wW o Umawmyg Lore )%> /%) o2y

Wi duke <<§J?\ jyj =0 gl \457 Solv )?E>i“(/5f><>
O

e St A Now, ) L o

5] & $>+2@wch>f<@w@>_ STIT) AT
- - =

Tal®? (T8




cale B o ?‘ —
N oo S P) o o <?§(W[§>

[~ ‘ t T e

(Tl w0 (T 170"
N = Z

— T

Corollony (Makhises's il Ronisibod) T e
W:W(TWLL

fos 20/11% msf%ﬁv‘-/ﬂ/ v SC“MW% z The QZ//*(UZ #

Vroo% © et D) b i O @[Q)j T hun
CENMP) B D) <l
p“ — 2 — ——— .1 </ @71 ”g
CT) TE) T S
Vv \/\/\J
ZFL Z‘ﬂz

Cﬁro\\wy ‘, OLJJ\Mj o AN quj(lye/vi»? \/\/\QC‘/\OLM{S\/\\ hﬂcrmg{g //(Jgisﬁm(%/,
7 ) .
D ook Apove e )2 D, /2/3L .

/

This is a great example of a theorem which has a very important physical loophole. We will see later in this course how
adding a scattering mechanism can decrease the resistivity, simply because this kinetic formalism need not be
applicable.



2.5) Thermal transport of electrons at low temperatures

We now return to a practical problem — given impurity scattering, what is the thermoelectric conductivity
matrix?
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2.6) Electron-electron scattering

Now we turn to our first interaction effect — what happens if there are electron-electron interactions? The
answer is that we need to add a new term to W, the collision integral...

A heuristic cartoon. Consider a sea of thermal electrons, and a single excitation moving around in this
background...
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For transport, we only need to evaluate the linearized collision integral
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In general, evaluating this object is quite nasty, but the temperature dependence is universal in a Fermi liquid
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We conclude that the electron-electron scattering rate is TA2. Note that in 2d there is a much richer story about the
structure of the collision integral that we won’t discuss here....



Now, it is tempting to generalize our previous argument about disorder scattering, simply replacing the impurity
scattering time with this TA2. But there is a very important caveat....let’'s compute the decay time for momentum.

Most metals have a large Fermi surface because each atom is contributing about 1 electron to the conduction band.
So umklapp is usually there. But in semiconductors (GaAs) or graphene it is possible to have such a small Fermi
surface that umklapp can be neglected
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2.7) Thermoelectric transport with a small Fermi surface

In this section we explore what happens if there is a large discrepancy between umklapp and momentum

conserving scattering rates. For simplicity, we consider a model with a circular Fermi surface.
Reference: 1804.00665

Note that in any Fermi liquid with a symmetry group G, the collision integral cannot mix sectors of different
symmetry. So with rotational invariance we can restrict our study to
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Now we turn to electron electron scattering, which we assume is momentum conserving for simplicity...
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To understand these equations we first analyze them in the limit of negligible e-e scattering...
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Now let us turn to the limit where e-e scattering is extremely large
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To understand this result, let us consider the following cartoon model, attempting to generalize the Drude model to
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The Wiedemann-Franz and Mott laws thus have a simple breakdown in the presence of momentum conserving
interactions. We will later call this interaction dominated regime “hydrodynamic transport”



One more useful thing is to determine the experimentalist’s thermal conductivity:

Momentum conserving interactions suppress the experimentalist’s thermal conductivity while they do not strongly affect
the electrical conductivity. This is a key result. Especially at low temperatures this is a compelling transport signature for
strong electron interactions and has been verified recently in a number of different compounds. But | caution that the
story can be different for more complicated Fermi surfaces, and with umklapp etc...

2.8) Phonon-impurity scattering

Now we turn to the kinetic theory of thermal transport for phonons. Things are rather similar so | will try to
not belabor the points so much. If the phonons are non-interacting and scattering off of impurities, then the
same form of streaming and collision operators hold as for electrons, and all that changes is equilibrium
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In the presence of impurities, W is given by the same formula! Just need to change the equilibrium distribution in the
inner product. Let’s assume the disorder is relatively short range and “homogeneous” analogous to our discussion of
electronic transport.
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2.9) Phonon-phonon scattering

We continue our discussion of phonon contribution to thermal conductivity, now turning to the possibility of
phonon umklapp scattering
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For simplicity let’s just go directly to our variational estimate:
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Where the derivation of this result is similar to that for electron electron scattering.
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At low temperatures only umklapp is present, because there is no Fermi surface for bosonic phonons. So we expect
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Like for electrons, impurity scattering will dominate at low temperatures. At intermediate temperature scales there
can be a very nasty interplay of different effects of umklapp, band structure etc. there is not a clean theory here



2.10) Electron-phonon scattering

In this part we now consider the electron phonon scattering integral.
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This result can be derived analogously to earlier results, and so we state it without proof.

We now make “Bloch’s ansatz” which is that the phonon distribution is in equilibrium. We will return to this assumption |
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y about the acoustic phonons. Another reasonable assumption is that the phonon energy
Jm is very small compared to the electron energy, since in a typical metal
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Electrons will stay close to the Fermi surface




Khjfﬂﬂﬂ\b put E

dE 2
CEWE= 9 L Sl o ae) BIATEG) SRy B 254

Wiite go\”‘ﬁ /gﬂ(@ gaﬂiw L P -ilypeadent

v 2
(& \wl|E>~ T 1% % RNt TN
| Sty 211 (B0 804> 6L
N L ' ’ Tea® Wy [ {rean, M%jw g
w@ y MS'Pj thm/\ @N %2@1 7 - Q&O/w[i;)
Th, 1
| . I 7
<EWIE) ~ g g ﬁﬂ%@%{ﬁ@ -k, ’?)5
’ ﬁ -y
W O Do Turh o h S&? \ \§>N (
W K)_/, S/V\@Q @OH’)C\L \Pe/(%xqjh% %W\ﬂ, \[ (Px>

/W\@ XVWS)WJF o vt b cras T ansalz %@\:ko@

o 0\ *
<VK\MPQW i%@‘ g&w; BWBQZ ™ T4 2

S“\a <P \T§¥ _ SMQQEZ/ - @gdﬂz@ — —onw TO

Ut e/ 2 T
7(\ 7{>

W|
0o xS Tl
AR <p%/1>@ T

(TB Ty com verHigual V\/w)ml)



Surprisingly, that TA5 is not easy to observe in an actual metal. The problem is that you have to be at extremely low
temperatures where impurity scattering dominates. Because at higher temperatures...
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By room temperature the phonon induced resistivity of most metals will be linear in temperature.

Lastly let’s briefly mention optical phonon contributions. These are not usually so relevant for real metals
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2.11) Phonon drag

Now let us relax Bloch’s assumption that the phonons are in thermal equilibrium. In general the problem
simply becomes a more involved variational one, etc...so let’s focus on a simple example where we have

electron-impurity scattering, momentum conserving electron phonon scattering, and momentum relaxing
phonon scattering
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The Bloch resistance is thus reduced by the relative momentum relaxation rate of phonons to umklapp or impurities,
relative to the momentum conserving rates, weighed by number of excitations involved in each....

This can get rather messy, and in many metals Bloch’s approximation is reasonable. But at very low temperatures it
may be the case that phonon umklapp and impurity scattering are both extremely suppressed in which case phonon
scattering simply drops out of the expression for electrical resistance!



