
Physics 7450, Fall 2019
3. Hydrodynamics 
3.1) Diffusion on the Fermi surface

So far we have essentially been assuming that the system is relaxing to equilibrium in a spatially 
homogeneous way.  It is now time to relax that assumption.  Recall that in our study of short range disorder 
in a low temperature Fermi liquid, we found that 
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Now we need to turn on the “streaming” terms in the kinetic equation.  These become non trivial if we have any 
inhomogeneity.

So let’s write down the kinetic equations, restricted to these Fermi surface fluctuations...

On time scales short compared to the impurity scattering time, we can reduce the problem to non interacting “ballistic 
physics”.  This regime will be discussed more in the next part of the course.   So what happens on long time scales?
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Hence we arrive at the following tower of equations...
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We interpret Phi_0 as the charge density, since after all...

This is the simplest hydrodynamic equation.  As we make precise later, hydrodynamics is the effective theory of how 
conserved quantities evolve on long time scales.

Let’s go ahead and think about the conductivity of this theory.  Since
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3.2) Hydrodynamics as an effective theory

There are a few shortcomings in our discussion thus far.   We have derived some equations governing the 
dynamics of globally conserved quantities, but they’re all within linear response.  Also, why did these 
equations take the form that they did?  We’ll now give a second perspective which should help answer 
these questions.

Suppose that we have a system with a known set of conserved quantities.  Our postulate is that on long 
time scales, the only slow degrees of freedom are the conserved quantities themselves...

This conservation law should hold quantum mechanically (as an operator statement) as we will discuss near the end of 
the course.   For now let’s treat this as a classical constraint.

We will now proceed by carrying out a Taylor expansion of the currents, order by order in derivatives. This is called a 
derivative expansion or gradient expansion.

Thus w e derived a n Einsteinrelation
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As a simple example, let’s consider our theory of charge diffusion along the Fermi surface from before.

This diffusion equation is the simplest hydrodynamic theory, describing the relaxation of charge.

There is one more important ingredient to hydrodynamics, corresponding to the second law of thermodynamics.

As we will see, also necessary for diffusion to be well behaved.
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It is straightforward to generalize these arguments to a theory with multiple conserved quantities that are scalars under 
rotation.

A classic example of this would be the diffusion of charge and energy in a metal (in the absence of long range Coulomb 
interactions, which we will shortly get to...)

Reference: 1405.3651

Finally, let’s discuss a system with a conserved energy, charge and momentum — just like a classical gas.   Since 
momentum is now a vector under rotations, even in an isotropic fluid the currents become a little more interesting.

But not all of these coefficients need to show up.  There are two things to deal with: symmetry forbidden terms, and 
terms which correspond to a change in fluid frame.  Let’s start with the first.
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Suppose we have rotational invariance.  Then angular momentum is conserved:

Now we come to the question of fluid frame

So we would like to only keep track of terms in the currents which are physically distinguishable.  This is called “fixing the 
fluid frame” in hydrodynamics.   A common choice for nonrelativistic theories is to set all terms involving time derivatives 
to zero.

One final thing that is often done is to replace densities of conserved quantities with their thermodynamic conjugates
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The procedure for deriving hydrodynamic equations more generally follows this procedure — using thermodynamic 
constraints to fix the leading order (zero derivative) coefficients in the currents, then fixing fluid frame, and finally using 
second law of thermodynamics.  In this context, the result of the second law is that

There is one final point worth making.  Independently of a kinetic theory description, namely purely from effective theory 
principles, we observe the following basic estimates of the derivative coefficients 

We will see explicitly how hydro breaks down in the next part of the course, on shorter length and time scales.
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3.3) Hydrodynamics from a general kinetic theory

We now derive the linearized hydrodynamic equations from a generic kinetic theory, and hence explicitly 
calculating all the phenomenological coefficients of hydro. we focus on a theory with a conserved charge, 
energy and momentum, these techniques generalize to any kinetic theory.

Our first step is to find an explicit expression for all of the currents.

Next, suppose we apply an infinitesimal change to the distribution function 
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Part of our hydrodynamic ansatz (which we will carefully justify in general, and already saw in our simple examples of 
diffusion on the Fermi surface) is that on long time and length scales...

With isotropy, though with any sort of “mirror” symmetries, only the last term above is non-trivial.

Similar calculations lead to the following

We did this calculation back in section 2.9

This confirms the results advertised in our earlier discussion on hydro.   Now it is time to move to the derivative 
corrections to hydrodynamics... let’s write out the following 
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The entropy production rate is given by 

These derivative corrections serve to relax the system back to global equilibrium.  In general these dissipative terms will 
be present.
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3.4) Hydrodynamics of a low temperature Fermi liquid

Now let’s run our algorithm on an isotropic Fermi liquid, assuming there are no impurities and all electron 
electron scattering is momentum conserving.  

Using a relaxation time approximation, and assuming two dimensions for convenience...

We follow the same procedure as before, keeping only terms relevant at the longest wavelengths...
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shear viscosity:
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To summarize what we learned, the linearized equations of hydrodynamics for a Fermi liquid are, using previously found 
identities

Remarkably, these are (at leading order at low temperature...) precisely the hydrodynamic equations for a Galilean 
invariant fluid, where

The Galilean symmetry forbids all the incoherent conductivities except the thermal one in our standard fluid frame, 
because the current and momentum density are exactly related!

Remarkably we did NOT assume Galilean invariance in our theory, but for any isotropic Fermi liquid there is a sense in 
which this symmetry “approximately” arises at low T.  One way to think about this is that at low T, we can’t tell what the 
full dispersion relation is.  If it was Galilean

Then all of the identities we wrote would have to hold exactly.  The breaking of Galilean symmetry is at the same order 
where we can see deviations from the quadratic dispersion...which means we have to go to O(T^4) in dissipative 
coefficients !
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3.5) Quasinormal modes
Reference: 1704.07384

The simplest fluid is the one with only scalar conserved quantities, where we found 

Next, let’s consider a fluid with conserved momentum.  In this case, 
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In a generic fluid, all of the modes will be either sound waves or diffusion modes (at least in the presence of time reversal 
symmetry and inversion symmetry).   Reference: 1710.11141

3.6) Plasmons

These sound and diffusion modes are commonly observed in all kinds of classical fluids.  But why not in 
electron fluids?  There are two obvious issues.  Firstly, the presence of impurities leads to momentum 
relaxation, as we will discuss in a little bit.  But for propagating sound modes, there is also the problem of 
the long range Coulomb interactions in metals...

For simplicity let’s focus on the sector of charge and momentum dynamics, relevant for low T...
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Let’s again look for quasinormal modes.  We need to Fourier transform the Coulomb interaction

Whether the electrons are confined to 2d or not, we have the 1/r potential...except in the presence of a gate!
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Now we plug back in to the equation of motion

This scale is usually very fast compared to electron-electron scattering, so well beyond the “hydrodynamic” frequency 
scales.  Thus there are no propagating sound modes.

Plasmons propagate much faster than ordinary sound modes, but still with a finite velocity.   In either dimension, the 
plasmon dispersion is robust against hydrodynamic effects up to its decay rate.  The real part of these dispersion 
relations has been seen in many metals, but the imaginary part is harder to detect, and there are of course other 
contributions to plasmon decay...
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3.7) Momentum relaxation and quasihydrodynamics

The second issue in a metal that we need to deal with is the presence of impurities which relax momentum.  If 
the impurity scattering rate is extremely long lived though, we can incorporate it...

Quasihydrodynamics is a label that we assign to a theory where some of the degrees of freedom are not 
exactly conserved, but whose decay rates are extremely small.  It is easiest to think about with an example 
— in our case, the Fermi liquid hydrodynamics in the presence of momentum relaxation...

Let’s first think about the quasinormal modes here.  We find that 
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It is instructive to draw this by going into the complex plane:

The “quasihydrodynamic” momentum decay mode “collides” with the charge diffusion mode to create two sound modes.  
For a second perspective on this, let’s think about the equations of motion.   For simplicity let’s imagine static flows 

For a circular Fermi surface, using identities derived previously...
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Roughly speaking, viscous electron flows become relevant on scales short compared to lambda, but still long compared 
to the electron scattering length...

3.8) Transport in narrow channels

Let’s give a specific example of this effect.   Consider the following setup 

The relevant hydrodynamic equations here are...(assuming solutions only depend on the y coordinate)
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The precise slip length is relatively unclear in current experiments, so we will treat it as a free parameter.

Let’s finally return to a transport calculation, and compute the resistance per unit length of the channel...!

This is the same transport coefficient as if we just solved the Ohmic transport equations directly!
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In contrast, if the Gurzhi length is very large compared to the channel width...

This very peculiar scaling of the channel resistivity is, in principle, a clear prediction of the hydrodynamic flow regime.  In 
practice, as we will discuss more soon, it is not so easy to see in experiments...

Also note that because this prediction of hydrodynamics is not particularly sensitive to electronic dynamics, only to the 
momentum conservation equation, one could also predict such behavior for phonons in the presence of an applied 
temperature gradient, where the w^3 scaling would again be a signature of hydro

One last very interesting point here.  We’ve found that in the regime where channel is small enough that electrons behave 
like a viscous fluid, 

The faster the collision rate, the smaller the resistance!  This violates one of our “theorems” in the kinetic theory of 
transport, but in reality it is simply pointing to the breakdown of some of the assumptions that we made there.  In 
particular, spatial inhomogeneity of the channel was crucial to get this effect to work.

What is going on here?  If the slip length is infinite, the boundary condition is that 

It was crucial, to get this modified viscous resistance, that the boundary conditions on the fluid relaxed momentum.  If 
they conserve momentum, then resistivity is always given by the Ohmic answer, even for a short channel!
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3.9) Transport in inhomogeneous media
Reference: 1011.3068

More generally, let us calculate the transport properties of an electron fluid moving in a highly 
inhomogeneous medium.  We will assume that the fluid is almost homogeneous, except for the presence of 
weak potential inhomogeneity...

The fully nonlinear hydrodynamic equations are, assuming no time dependence...

Up to higher derivative corrections.  Observe that the sources and thermodynamic variables always come coupled 
together.  This is important, and it represents that the fluid cannot locally distinguish between whether a thermodynamic 
gradient comes from the fluid itself or an external source.   Let us imagine applying the following external source:
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~

e . g . fo r transport
spatially inhomogeneous, small
amplitude but NOT infinitesimal.

In equilibrium (i.e . 8EAi=0): µ4xFnF;dx1
To solve a t linear o r d e r i n SEA;...

le t Madi, ~ X (small parameter). Take SE-70 TH EN a → o . . .

Claim. I f u ; = Suit't), p±8µA , t h e n
a t leading o rde r :

µ
constant

su; = 8 1 + 8M¥ + . . .

1,2 x

8µA = STA I + . . . .

×



Take the Fourier transform of the perturbations.  We find that
PAdi s

← constant, background/ equilibrium value ~

ikipasq.lk) - i k;{ABS,Blk) + 21¥Mais Sui] = O

PA ik i 8nA t yk'su, + (fiddly) kilg.gg. = O }¥5')
kj8uj §+2¥y]# = - i k Agua

pApBqB

G I F
+ k 22^343 t i k;Sri pit, = O.

8pACH = (ftp.gjtk-EABItlikihii/pBi,

Integrate momentum equation a t 040):

P AE? =
fµ¥µ pftisdiki.snBl-H

=§I¥
a

Milk) kik;
pfi.tk/
fE1pjtk2EABj)suj.

= M;
j Saj ,

where Aj ~ " momentum relaxation" tensor...

A t leading order, J?=pAsa; ⇒ r?jB=pAfijµ



We have just derived the precise form of the “hydrodynamic transport coefficients” found in our earlier treatment of 
transport at strong momentum conserving scattering rates.  Namely, all transport coefficients are proportional to 
thermodynamic densities, weighted by an inverse momentum relaxation tensor.

Let’s now focus our discussion on the theory of transport in a Fermi liquid at low temperatures, where we have 

rii.si#..kikit:::lft.:i.IiIiHatl::....I'
'

fendis Tsais)

=f%
¥µkik;f¥÷:)fI¥#tt÷h¥.

t÷¥)
Intel T¥ok

'
(-endis Tsdis)

t.gg#afkikifIdisI/
2lHFYtTkeiIIn2dsnaislH-nsa.int}
I f the disorder v a r i e s o n length scale 4 ) lee:(ke}):

electrical resistivity pn¥¥tT¥z
n

←
fontribut
ion

to

transport from
heat

analogous to the ~¥gz t T I diffusion.
-

'

"on"

viscous effects we're → s o dinningta
fidifftS e e n i n the channel


