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4. The ballistic-to-hydrodynamic crossover

4.1) Ballistic transport in narrow channels
Reference: 1801.02879

Let’s recall where we ended before. We found that the resistivity of an electron fluid in a narrow channel
was
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When the channel length is so short, we just expect there to be no collisions whatsoever! This is called the ballistic

regime, and we can access it by solving the Boltzmann equation with no collisions — i.e., a collection of non-interacting
particles bouncing down the channel!
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Before doing a detailed calculation, let’s estimate what we expect. \
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Put another way, we predict that the momentum relaxation rate is limited by the time it takes for the electron to bounce
back and forth across the channel.

Now let’s do a calculation. We will go ahead and use the Boltzmann equation...
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At low temperatures in a Fermi liquid, we need only keep track of the fluctuations right at the Fermi surface. So we
conclude that it’s safe to write
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Now comes the hard part — we need to impose boundary conditions! Let’s do the following...
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For the kinetic problem to be sensible physically, we’ll impose boundary conditions relating the outgoing distribution to
the incoming distribution. d
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This null vector precisely corresponds to Number
conservation of electrons! Set these integral to
zero, they will decouple anyway!
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This integral is formally divergent! In a channel with electron electron interactions, however, we could regulate this
integral at the scale given by the length of the interactions...

[ - | \\

\2 - (/Lvleﬁbgl{}w | ‘/‘DXL)OQ;Q?
- YW & Ly T sinl Wéwlef Ty (7 /v

Q 051 TR pLr it M -




To understand the origin of this divergence, let’s think about the following
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Particles whose velocity is oriented in the x direction traveling down the center of the channel are not easily scattered by
the walls! They are also highly accelerated by the electric field since they are aligned by it, and they lead to the
logarithmic divergence.

If we have some very weak electron electron scattering, however, we can’t accelerate them forever. Eventually after a
collision mean free path, they will scatter. So we should only consider angles in the ballistic integral large enough that
an electron electron collision can’t occur before the boundary scattering...
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The second divergence that we should understand is the divergence as all scattering becomes specular. This is
analogous to the Ohmic limited transport in a channel with momentum conserving boundary conditions because after all,
specular reflections conserves momentum in the x direction. So physically, we see that the slip length from before is
roughly related to the kinetic nature of boundary scattering !

At this point, let’s now summarize what we have learned about flows in channels.
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It is tempting to just go ahead and connect the ballistic to the hydrodynamic regime, and assume that the resistance is
always increasing faster than the Ohmic prediction as the channel gets narrower. Indeed, this is essentially what
happens. To rigorously show this, we would need to solve the full kinetic equations with a collision integral, a task that
has to be done on a computer...

4.2) Transport in inhomogeneous media
Reference: 1706.04621

Our goal is to now repeat our calculation of transport in an inhomogeneous fluid, but in the full kinetic theory.
for simplicity, we’re going to focus only on the lowest temperature regimes, when we can neglect any radial
deformations of the Fermi surface...
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The method of analysis is the same as in the hydro case. If there were no inhomogeneity....
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In our old theory of transport, W always had an inverse. Even with a small Fermi surface, there was always electron-
impurity scattering. What’s different in this calculation is that we have not yet integrated out the impurities! So it’s as if
we have to go all the way back and calculate the electron-impurity collision integral from first principles...now in the
presence of electron-electron scattering !
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The electric field just keeps accelerating the charged electron fluid forever! Just like before, we look for a singular

solution in the strength of the disorder ...
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It remains to calculate the coefficient Gamma. At this point, we have to turn to a simplified model of kinetic theory. Let’s
use our simple model of the circular Fermi surface, wit
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To invert this infinite dimensional matrix, we use the following trick. First, a block matrix inversion identity
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We now carry out the block matrix inversion in stages. Our goal is to integrate out the modes with m 2 or bigger. But
observe a recursive structure to the higher m modes....
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This is a bulk manifestation of the
Gurzhi effect!
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Let’s check that we have correctly reproduced the hydrodynamic limit, compared to what we found before...
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Thus we see that in this simplified model, the momentum conserving interactions decrease the resistivity further. This
effect has never been convincingly seen in bulk resistance but has been seen in more tailored setups...

4.3) Zero-to-first sound crossover
Reference: 1801.01495

While we are solving this simplified model of a kinetic theory for a two dimensional Fermi liquid, we ought
to also revisit the propagation of the normal modes. Consider the plane wave solutions of the unsourced
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Let’s ask what happens to the hydrodynamic modes as we begin to approach time and length scales which are
comparable to or shorter than the scattering time. To do this, we use a trick
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To analyze this equation...
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This is the ordinary sound wave. At shorter time scales, we instead have ( X << 1/\))
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