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5. Classical magnetotransport
5.1) The Hall effect

We now talk about transport phenomena in the presence of a background magnetic field.  Let’s begin with 
our Drude model...

Before solving this, let’s take a step back.  Suppose momentum relaxation is negligible.  Then we actually get a very 
simple formula for resistivity!

This formula which holds in the absence of momentum relaxation is extremely universal.  This is often called the classical 
Hall effect, but this formula would hold in the quantum Hall effect also!  It’s a simple requirement from momentum 
conservation!

One thing that might seem puzzling is that the conductivity/resistivity tensors are antisymmetric.  This is not a violation of 
Onsager reciprocity because the magnetic field breaks time reversal invariance!

The Hall effect is a very useful way of measuring the density of charge carriers in a metal.

Lastly let’s still check that the Hall conductivity is positive semi definite
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5.2) Absence of Drude magnetoresistance in isotropic metals

Now let’s add in momentum relaxation and solve our Drude model.

Hence our simple Drude model of transport predicts that the dissipative xx-components of resistivity do not care about 
the magnetic field!   

As in o u r original Drude model, let's approximate J i =-EmPi.
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5.3) Kinetic theory of magnetotransport

That very simple Drude cartoon of magnetotransport is obviously too simplistic.   So now let’s begin by 
adding magnetic field effects back in to our kinetic theory of transport...
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As a simple example, let’s evaluate the conductivity using a relaxation time approximation for the ordinary part of the 
collision integral:

We evaluate the matrix inverse using a trick....
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In our kinetic theory, we can always show that the magnetic contribution to transport is not “dissipative” in that it does not 
contribute to entropy production...generalizing the derivation from before, we find that 

Let’s evaluate this for a circular Fermi surface

Unfortunately our variational principle for transport no longer holds!  So magnetic fields can both contribute to 
dissipationless transport coefficients such as Hall conductivity, as well as modify dissipative coefficients...
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5.4) Incoherent conductivity and magnetotransport

As an explicit example of kinetic theory with magnetotransport, let us imagine a toy model of a metal where 
not all of the current is proportional to momentum.  We assume two spatial dimensions

We make an uncontrolled approximation that the only relevant vectors (I.e. kinds of perturbations to the distribution 
function) are the two components of the momentum and the current.
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So now we write out our dissipative and magnetic collision integrals...

Now we take the matrix inverse of the combined collision integral.  The answer is not very enlightening.  So let’s just write 
down our final formula for the conductivity tensor...
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In the limit where momentum relaxation becomes negligible, we see that 

If momentum relaxation is finite and the magnetic field vanishes, we obtain that instead 

Now let’s calculate magnetoresistance:

Using the fact that 

So in general, magnetoresistance is positive in two dimensions for 
the incoherent metal.   The situation can be more complicated in 
higher dimensions.

Also observe that in general, the incoherent conductivity has decreased the electrical resistivity.  Only when the 
magnetic field is sufficiently large do we recover Drude transport 
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5.5) Hall viscosity

We now turn to the study of hydrodynamic modes in a background magnetic field.  Before beginning, we 
should emphasize that momentum is no longer conserved in the presence of a magnetic field...so we are 
really thinking about a “quasihydrodynamic” limit where the magnetic field is small enough that momentum is 
still long lived compared to other microscopic degrees of freedom...

For simplicity, let’s focus on the low temperature limit of a Fermi liquid, where we can approximately ignore energy 
conservation and focus only on charge and momentum conservation.  To first understand the hydrodynamic regime, let’s 
first derive it from kinetic theory.  We have 

Previously we went to the harmonic basis...for an isotropic system in two spatial dimensions 

Note that this does not mix different angular harmonics, this is a consequence of rotational invariance.
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We can treat this problem much like what we have solved before, with an effective collision integral consisting of 
momentum conserving interactions along with the magnetic contributions.   Let’s work in our relaxation time 
approximation, where we obtain that 

In the hydrodynamic limit, we can directly integrate out the harmonics except for 0, 1 and -1.  We obtain that 
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To better understand the Hall viscosity, let’s calculate the viscous stress tensor directly from kinetic theory...

In index notation:
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We can understand how the Hall viscosity arises more abstractly.   We ask what are all possible forms of the viscous 
stress tensor compatible with the symmetry of the isotropic Fermi liquid in the presence of a background magnetic field.  

Most general possible tensor structure that can be written compatible with these symmetries is 

5.6) Hall viscosity and the Gurzhi effect
Reference: 1703.07325

Let us now look for an experimental signature of the Hall viscosity in a solid state transport experiment.  We 
consider the same kinds of flows through narrow channels as before

The solution to the equations of motion is the same as before.  If the boundary conditions are 
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Due to the background magnetic field, we now pick up a Hall voltage!

Upon plugging in our old formula for resistivity and doing a few algebraic manipulations, we find the following result:
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Recall that in our conventions, the Hall viscosity of the electron Fermi liquid was negative 

A numerical simulation of the full kinetic theory shows that 

5.7) Viscous magnetoresistance
Reference: 1612.09275

Let’s now ask what the effect of viscosity is on transport in the hydrodynamic regime in an in homogeneous 
metal.  The kinetic calculation can be done too, but it is more complicated, so let’s focus for simplicity on a 
viscous, isotropic low temperature Fermi liquid with negligible thermal transport (an assumption we will justify 
shortly)

For simplicity we will work in two dimensions 

This is precisely the classical Hall effect.

Next let’s see what happens if we add a perturbatively small amount of disorder...
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Look for a solution to the equations of motion of the form
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At long wavelengths we conclude that 

This is positive magnetoresistance!  This is the generic picture for transport in inhomogeneous media.  In experiments in 
narrow channels, one can see the negative magnetoresistance arising from scattering off of the boundary.

5.8) Hydrodynamic modes in a magnetic field

The last calculation we will do in a magnetic field is to understand the fate of the hydrodynamic modes.  
The most interesting ones will be the sound mode and the transverse momentum mode, since the magnetic 
field breaks momentum conservation explicitly!  So let’s approximate we are in a low temperature Fermi 
liquid, so the bulk viscosity is rather small...
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Let’s start by looking at the limit

The cyclotron resonance corresponds to the fact that a uniform fluid velocity will swirl around in the magnetic field due to 
the Lorentz force 

Now let’s think about that mode which was suppressed.  We find that 

Hence in a magnetic field we can get subdiffusive modes!
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