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6. Linear response theory
6.1) Quantum many-body systems
Reference: Forster, “Hydrodynamic fluctuations, broken symmetry and correlation functions” (1975)

Up until this point, this course has only discussed the semiclassical theory of transport.   The reason for this 
is that in large part, things that we know about transport come from this kinetic theory based formalism.  
For the rest of the course, we will discuss the quantum theory of transport, which may not be as useful for 
an everyday material but is universal.

We begin by quickly introducing the set up of the problem.

In kinetic theory, we treated the first line of the Hamiltonian — the non-interacting piece — as dominant.  However, that 
may not be the case in a real system (especially in low density conductors, or so called “strange metals” which arise near 
a quantum critical point).  So as much as possible, we will try to develop a formalism which does not rely on the series 
expansion above in phonon/electron operators.  Put another way, we want to relax the assumption that “quasiparticles” 
exist — and describe transport phenomena and hydrodynamics in terms of local operators which are universal but may 
not obey a kinetic equation, even approximately.
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In the absence of quasiparticles, what can we do?   Well, if we have a conserved charge, we could write down operators 

We still have transport!  Ohm’s Law will become an equation for the expectation value of this operator:

We will actually often find it easier to work not with quantum states, but with time evolved operators.   In this perspective, 
the quantum state stays fixed and the operator obeys the Heisenberg equation 
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6.2) Time-dependent perturbation theory

The theory of transport is about weakly perturbing systems out of equilibrium by applying small 
perturbations to the original Hamiltonian.  So let us discuss what happens to a quantum system in the 
presence of a very weak perturbation.

Equivalently, as discussed, we can think about the density matrix remaining exactly thermal, while instead the operator 
picks up time dependence.   Let us ask for the time evolution of 
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Let us now consider the following simple scenario.   Let’s take the following perturbation

Note that in the presence of time translation invariance of the unperturbed Hamiltonian (necessary to have a thermal 
equilibrium!) the Green’s function only depends on the difference of two times.  This is a really useful fact for us, and we 
will use it to great effect as we go.
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A final important point for us is that many quantum systems are defined with some kind of translation invariance in space, 
either discrete or continuous.  So it is often useful to define the following

6.3) More Green’s functions

Next, it will sometimes be useful for us to define other kinds of Green’s functions, which we now list for completeness 
(some of them will start coming up frequently...)

These are not independent.  For example, 

More important are the Kramers-Kronig relations that relate the spectral function to the Green’s functions 

Gfahi, t ) =iOlHµ,H,Quid])
whenever w e

have a notion of a
local operator i n space (which, i n th is

class,

w e always d o . charge densityk u r re n t e t . )

advanced Green's function: Gaggle,H=iOtt)
(Cole,-4, ACE,oD)

spectral function: pout) = ([01*4,910,01])

symmetrized function: Space,t) = {({Ole,t ) , 918,01})
where {A,B}=ABtBA

Poalestt-i(6%+61)

Since i'OlH=§
¥, z¥ i " " where £j%÷.?.

GRqelkiwkf.dz#PoalkiI.
w - w ' t i e

Assumin
g

time-reversal, padwkpooth. I n 6%04%4=12 Poole, w)



Next, let us discuss the susceptibility.  We define the susceptibility “classically” as follows.  If 

Does this relate to Green’s functions?  It seems pretty 
similar, but let’s make this idea precise.

Hence, the Green’s functions at low frequency encode classical thermodynamic coefficients!
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6.4) Spectral representations

Let’s now focus a little bit more on the spectral function.  Suppose we managed to exactly diagonalize the 
many body Hamiltonian...

The spectral function is, in this sense, positive.  This positivity constraint ensures the stability of thermal equilibrium, as 
we will see shortly.
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6.5) Fluctuation-dissipation theorem

Now we come to a very important result that relates two of the Green’s functions we have found thus far.

This is the quantum mechanical version of the fluctuation dissipation theorem!   
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6.6) Formal definition of transport coefficients 

At this time, we are now ready to provide a formal definition of transport coefficients.   Let’s begin by thinking 
about the electric field.

We can source an electric field in two ways in a quantum system, either by the gradient of the potential (usually what we 
implicitly have in mind) or better, by a vector potential.  Why is this approach better?  Well consider that the 

It seems more natural to try and directly drive the current rather than drive the density — although we could do both and 
would arrive at the same answer in the end.
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Going back to real t ime. . . .
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In general, it is very hard to calculate these Green’s functions explicitly, except in examples like the following...

6.7) Quantum transport of free fermions

Consider t h e many-body
Hamiltonian o f free fermions.
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This formula is extremely similar to what we saw in kinetic theory in our treatment of electron-impurity scattering!  In a 
sense, what kinetic theory approximated for us was the value of the current operator in the exact energy eigenstates, in 
terms of approximate eigenstates (in the absence of the impurities)
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