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7. Hydrodynamic correlation functions
7.1) Diffusion in linear response

Our first goal is now to argue that linear response theory in a quantum system ought to reproduce 
hydrodynamics in a certain regime!

Let’s take the simple example of the diffusion equation for a conserved charge.   Classically, we would have 
had

So why not expect the following in a quantum system?

Assuming this relation, what does it imply for correlation functions and linear response ?
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Now let's Laplace transform
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Now let's Laplace transform t h e diffusion equations
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What are we to make of this  formula?   Recall that hydrodynamics was only an approximation valid at very long length 
and time scales.   Thus, this Green’s function should only make sense at sufficiently small frequency and wave number

The highly singular nature of this Green’s function has a few important features
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7.2) Kadanoff-Martin formalism
So now let us generalize this method to more generic hydrodynamic equations.

This formula was originally derived by Kadanoff and Martin;  it is quite useful as it allows us to translate our intuition from 
hydrodynamics (and kinetic theory, as we will see) into quantitative predictions about the response of quantum systems.

In particular note that every pole of the Green’s function will correspond to a quasinormal mode of the hydrodynamic 
equations!

Suppose that w e have the following set o f hydrodynamic equations:
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7.3) Sound poles
The next step is to talk about sound waves in a fluid.  For simplicity let’s focus on only charge conservation 
and momentum conservation, so our equations read
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As before we can make a few generic comments.

Transverse components of momentum are diffusive, and thus analogously to before:

Putting this together we can sketch the motion of poles in the complex plane:
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7.4) Quasihydrodynamics and the Drude peak
We can also follow apply the Kadanoff-Martin formalism to systems with almost (but not quite) conserved 
quantities.  For example let’s think about a fluid with weak momentum relaxation
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As a simple example, let’s now compute the charge conductivity 

This is the so called Drude peak.  It is commonly used as a model for the AC response of a metal.  It is quantitatively 
accurate only in the limit of weak momentum relaxation.  A quantitatively accurate Drude model in a metal is possible,  
yet is surprisingly hard to find in the real world due to various inter band transitions, the relative importance of incoherent 
effects, and so on.
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7.5) Kinetic theory as quasihydrodynamics
Finally let’s think of the Boltzmann equation in a “quasihydrodynamic limit”, so that we can calculate Green’s 
functions of systems with long lived quasiparticles.
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Note the presence of the branch cuts in the Green’s function — this is a generic effect in kinetic theory 
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