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8. Memory matrix formalism
8.1) Slow and fast modes

Our goal is now to introduce a method for isolating the (quasi)hydrodynamic poles found in Green’s 
functions up until this point.  Let us quickly review the problem of interest
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8.2) An inner product

Our goal is to answer these questions, but before this we need to introduce a bit of technology to help us 
calculate things.   Let’s start with the notion of operator overlap, which we’d like to make precise.
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Prooff We begin by taking a time derivative;
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So in addition to giving us our natural inner product on quantum operators, with the overlap itself related to the 
thermodynamic susceptibility, we have also found a natural way of calculating the conductivity!

8.3) The memory matrix

With this formula for the conductivity in mind, we are now ready to calculate.  The first thing we need to do 
is formalize the notion of fast and slow operators.   This will be similar to how we derived hydrodynamics 
from the linearized kinetic theory, but in a fully quantum mechanical language
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Step 2 . We w a n t t o calculate CABCH. I t i s useful
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Now let’s define some matrices on only the slow degrees of freedom.

This is our main result for this final part of the course.   It tells us how to integrate out “fast” degrees of freedom to 
calculate Green’s functions of slow degrees of freedom.  Remarkably, the identities used to get this formula are exact — 
there isnt a need for slow modes to actually be slow!  But as we will see shortly, this method does work best when we 
actually do use slow modes as slow...

8.4) The memory matrix in real time

It can be instructive to re derive this formula directly in real time, to get more physical intuition for what we 
have actually done here (and for the name memory matrix).  First, we prove a lemma

As before: XaB=#AIB)

New things: NABITICAILIB) =-NBA

memory
MAB =#(AlpLgtt-gLg)

- 'qLplB)

matrix! 1
Since

ftp.wkt#14fiztipLp-ipLTgCz-gLg5'gLpkp' (DIB)

raplwt-%acfizr-N-
MI.la#1

lemma: eatB l t = eat + §, its Bette's't-s) (A,B matrices)

proof. I t dat't = eat'4tLAtB)
t

JflRHs) = eatA t eAtB + f d , its Belt-""thatB) = (Hts)(ATB)
At f=0, both matrices

knee
the identity. They obey some ODE

w l same initial condition, therefore a r e the same! Ok



The origin of the name “memory matrix” is thus because the memory matrix represents the time dependent feedback of 
the fast modes on the slow modes, after we try to integrate them out.  In general, due to the linearity of quantum 
mechanics, we can always solve for the isolated dynamics of a reduced subset of the degrees of freedom without 
sacrificing anything!  But the price we pay is non locality in time of the resulting equations.   The memory matrix as we will 
see, is useful when the modes we have integrated out (and the resulting nonlocality...) occur on fast time scales relative to 
those of interest. Then an approximate locality in time can re-emerge, but with dissipation now in the picture!  
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8.5) Transport with weak momentum relaxation
Reference: 1612.07324

Let’s now turn to an explicit example of how we can use the memory matrix to calculate interesting things 
about transport.  We return to our canonical example of a quantum system with a continuous translation 
invariance that is weakly broken by some external source
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Note: I f w e integrate o v e r space: fax x µ = Vol x ( p ) , a n d
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So the momentum memory matrix is given by the spectral weight of the operator which broke translation invariance!  This 
is a very useful fact, which as we will soon see, allows for tractable computations in a number of theories...

Now let’s put all of this together.  Using the scaling for M that we have found, we have
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We have essentially given a quantum mechanical, rigorous perturbative derivation of the Drude formula!  If we define

Our formula for the momentum relaxation time is a non-quasiparticles generalization of Fermi’s golden rule for impurity 
scattering — here it is the spectral weight of the inhomogeneously sourced operator that sets the disorder scattering rate.

8.6) Spectral weights and momentum relaxation times

Let’s put this new formula to use, and start making predictions for the resistivity of various systems by 
estimating the spectral weight that will control the momentum relaxation time.
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We ca n also s e e that diffusive poles dominate the spectral weight
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In models of non-Fermi liquids with a Fermi surface, the exponents can be more subtle. See 1408.6549, 1401.7012

8.7) Magnetic fields

Next, let us (quickly) justify the form of the conductivity tensor in the presence of a magnetic field.  For 
simplicity we stick to two spatial dimensions.
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This is precisely the prediction we expect from the classical/quantum Hall effect. 

If we now try to go back and include the momentum relaxing scattering processes, we find that 
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8.8) Hydrodynamics and the memory matrix

Now we will use the memory matrix to provide a more rigorous derivation of the form of hydrodynamic 
Green’s functions, focusing for simplicity on the diffusive Green’s function
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Now let’s think about the form of the memory matrix

Hence we precisely recover the diffusive form of the hydrodynamic Green’s function that we predicted previously.

Similar derivations work for more complicated hydrodynamic theories with multiple diffusion modes, or sound modes, 
etc.   one can also include the almost conserved quantities in this language to provide a formal justification of 
quasihydrodynamics
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8.9) Derivation of the linearized Boltzmann equation

Our last goal for this course is to use the memory matrix to sketch a semi rigorous derivation of the quantum 
Boltzmann equation in linear response
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This precisely agrees with our prior identification of the streaming terms in the kinetic equations as N, and the linearized 
collision integral as M
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