Physics 7450, Fall 2019
8. Memory matrix formalism
8.1) Slow and fast modes

Our goal is now to introduce a method for isolating the (quasi)hydrodynamic poles found in Green's functions up until this point. Let us quickly review the problem of interest

This means that we expect that for a generic operator that "overlaps" w/ one of these (quasitydro slow modes...

- What are the coefficients \#?
- If wslow is well separated from other time scales, how to compute it?
8.2) An inner product

Our goal is to answer these questions, but before this we need to introduce a bit of technology to help us calculate things. Let's start with the notion of operator overlap, which we'd like to make precise.
Recall in our discussion of kinetic theory... We had

$$
\begin{aligned}
\left\langle\theta^{\prime} \mid \theta_{2}\right\rangle & =\int \frac{d^{\alpha} p}{\left(2_{\pi} \hbar\right)^{d}}\left(-\frac{\partial_{f_{p}}}{\partial \varepsilon}\right)_{p} \theta_{1}(p) \theta_{2}(p), \text { where } \theta_{1,2}=\int d^{d} p \theta_{1,2}(p) n_{p} \\
& =\int \frac{d^{d} p}{(2 \pi \hbar)^{d}} d^{d} p_{p}^{\prime} x_{n_{p^{n} p^{\prime}}}\left(\theta_{1}(p) \theta_{2} L_{p^{\prime}}\right)=x_{\theta, \theta_{2}}
\end{aligned}
$$

We also saw that this inner product was extremely useful-this inner product, giving "overlap" between 2 operators, helped to control which operators were sensitive to which collision rates: $l . g$. if $\left\langle J_{x} \mid P_{x}\right\rangle \neq 0$ and $W=\Gamma\left|P_{x}\right\rangle\left\langle p_{x}\right|+\gamma\left(1-\left|P_{x}\right\rangle\left\langle p_{x}\right|\right), \Gamma \ll \gamma$, then

$$
\sigma_{x x}=\left\langleJ _ { x } \left(W^{-1}\left|J_{x}\right\rangle \sim \frac{\left\langle J_{x} \mid P_{x}\right\rangle^{2}}{\left.\Gamma\left\langle P_{x}\right| P_{x}\right)}+\cdots\right.\right.
$$

τ dominates transport.
Is there a quantum analogue of this inner product?

$$
\begin{aligned}
& \text { Gain: Define } \\
& \qquad(A \mid B)=\int_{0}^{\beta} \frac{d \lambda}{\beta}\langle A B(i \lambda)\}=\int_{0}^{\beta} \frac{d \lambda}{\beta} \frac{\operatorname{tr}\left(e^{-(\beta-\lambda) \mid t} A e^{-\lambda H} B\right)}{Z(\beta)} \\
& \text { Then } T X_{A B}=(A \mid B)_{+}
\end{aligned}
$$

Proof: We begin by taking a time derivative:

$$
\begin{aligned}
& \left.C_{A B}(t)=\int_{\beta} A(t) \mid B\right)=\int_{0}^{\beta} \frac{d \lambda}{\beta} \frac{\operatorname{tr}\left(e^{-(\beta-\lambda-i t) H} A e^{-(\lambda+i t) H} B\right)}{Z(\beta)} \\
& \partial_{t} C_{A B}(t)=\int_{0} \frac{d \lambda}{\beta Z} i \operatorname{tr}\left(e^{-(\beta-\lambda-i t) H}[H, A] e^{-(\lambda+i t)} B\right) \\
& =\frac{\partial}{\partial \lambda} \operatorname{tr}\left(e^{-(\beta-\lambda-i t)} A e^{-(\lambda+i t) H} B\right) \\
& \partial_{t} C_{A B}(t)=\frac{i}{\beta 2} \operatorname{tr}\left(A(t) e^{-\beta H} B=e^{-\beta H} A(t) B\right) \\
& \left(4(t) \partial_{t} C_{A B}(t)=-\frac{1}{\beta} G_{A B}^{R}(t)!\quad \begin{array}{l}
\text { So we see that } G^{R} \text { is deeply } \\
\text { related to } C_{A B}(t) \text {. Moreover, }
\end{array}\right. \\
& X_{A B}=G_{A B}^{R}(\omega=0)=\int_{-\infty}^{\infty} d t G_{A B}^{R}(t)=-\frac{1}{T} \int_{-\infty}^{\infty} d t \Theta(t) \partial_{t} C_{A B}(t) \\
& =-\frac{1}{T} \int_{0}^{\infty} d t \quad \partial_{t} C_{A B}(t)=\frac{1}{T} C_{A B}(t=0)!
\end{aligned}
$$

It's also instructive to take the Fourier transform of $G_{A B}$:

$$
\begin{aligned}
& -T G_{A B}^{R}(z)=\int_{-\infty}^{\infty} d t \text { 昀这 } \partial_{t} C_{A B}(t)=-C_{A B}(t=0)-i z C_{A B}(z) \\
& \Rightarrow \quad C_{A B}(z)=\frac{\tau}{i z}\left(G_{A B}^{R}(z)-G_{A B}^{R}(0)\right), \quad \begin{array}{l}
\text { The Laplace } \\
\Rightarrow \text { reastatesto to of } C(z) \text {, }
\end{array}
\end{aligned}
$$

Recall that the electrical conductivity was

$$
\sigma_{x x}(\omega)=\frac{1}{i \omega}\left(G_{J_{x} J_{x}}^{R}(i \omega)-G_{J_{x} J_{x}}^{R}(0)\right)=\frac{1}{T} C_{J_{x} J_{x}}(\omega)!
$$

So in addition to giving us our natural inner product on quantum operators, with the overlap itself related to the thermodynamic susceptibility, we have also found a natural way of calculating the conductivity!
8.3) The memory matrix

With this formula for the conductivity in mind, we are now ready to calculate. The first thing we need to do is formalize the notion of fast and slow operators. This will be similar to how we derived hydrodynamics from the linearized kinetic theory, but in a fully quantum mechanical language
Step 1: Separate out quentin operators into "fast" and "slow", ^1 fast subspace using the inner protect $(A \mid B) \ldots$

Let $\{\mid A]\}$ denote the set of slow modes.

We can write formal projectors onto slow (p) and fast $(q=1-p)$;

$$
\left.P=\sum_{\substack{A, B \\ \text { slow }}} \mid A\right)\left((A \mid B)^{-1}\right)\left(B\left|=\frac{1}{T} \sum_{\substack{A, B \\ \text { slow }}}\right| A\right) x_{A B}^{-1}(B \mid
$$

Since by definition, $|\theta|$ is fast if $(B \mid \theta)=0$ for my slow $\mid B)$, and if (C) is slow.

$$
\left.p(C)=\frac{1}{T} \sum_{A, B}|A| x_{A B}^{-1}(B \mid C)=\sum_{=T x B C}(A) \delta_{A C}=\mid C\right) \text {, }
$$

Step 2. We wont to calculate $C_{A B}(z)$. It is useful to write this as follows. Define the Lionvillian \mathcal{L} by

$$
\left.\partial_{t}(A(t))=i \mathcal{L} \mid A(t)\right): \text { namely, } \mathcal{L}(A)=\mid[(H, A]) \text {. }
$$

Note that $\mathcal{B}^{\mathcal{L}}$ is antisymmetric:

$$
\begin{aligned}
(A|\mathcal{L}| B) & =\int_{0}^{\beta} \frac{d \lambda}{\beta 2} \operatorname{tr}\left(e^{-(\beta-\lambda) H} A e^{-\lambda H}(H B-B H)\right) \\
& =\int_{0}^{\beta} \frac{d \lambda}{\beta 2} \operatorname{tr}\left(e^{-(\beta-\lambda) H}(A H-1 H) e^{-\lambda H} B\right)=-(B|\mathcal{L}| A)
\end{aligned}
$$

Then we can write, using $\left(A(t) \mid=(A) e^{\text {-i dA. }}\right.$.

$$
\begin{aligned}
& \int_{0}^{\infty} d t e^{i z t} C_{A B}(t)=\int_{0}^{\infty} d t\left(A\left|e^{i(z-\mathcal{L}) t}\right| B\right)=\left(A\left|i(z-\mathcal{L})^{-1}\right| B\right)! \\
& 0
\end{aligned}
$$

Step 3: Our next goal is to evaluate $\sigma_{x x}=\left(J_{x}\left|i(z-\mathcal{L})^{-1}\right| J_{x}\right)$ as a block matrix inverse. Suppose that we DEMAND that $\left(J_{x}\right)$ is a slow degree of freedom. Then we may write $z-\mathcal{L}=\left(\begin{array}{cc}z-p \mathcal{L}_{p} & -p \mathcal{L}_{q} \\ -q \mathcal{L}_{p} & z-q \mathcal{L}_{q} \\ p & q\end{array}\right)^{p}$

Using block matrix identities from before: (and $\left.\mathcal{L}^{\top}=-\mathcal{L}\right)$

$$
p(z-\mathcal{L})^{-1}=p\left(z-p \mathcal{L}_{p}+p^{\top} q\left(z-q \mathcal{L}_{q}\right)^{-1} q \mathcal{L}_{p}\right)^{-1} p
$$

Now let's define some matrices on only the slow degrees of freedom.
As before:

$$
x_{A B}=\frac{1}{T}(A \mid B)
$$

New things: $\quad N_{A B}=\frac{i}{T}(A|\mathcal{L}| B)=-N_{B A}$

$$
\begin{aligned}
& \text { memory } \\
& \text { matrix! }
\end{aligned} M_{A B}=\frac{-i}{T}\left(A_{p} \mathcal{L} q\left(z-q \mathcal{L}_{q}\right)^{-1} \mathcal{L}_{p} \mid B\right)
$$

$$
\text { Since } \sigma_{A B}(\omega)=\frac{1}{T} \sum_{\int_{S D}}(A \mid C)\left(-i z+i p d_{p}-i p d^{T} q\left(z-q^{2} t_{q}\right)^{-1} q A_{p}\right)_{C D}^{-1}(D \mid B)
$$

$$
\sigma_{A B}(\omega)=x_{A C}(-i z x+N+M)_{0}^{-1} x_{D B}
$$

This is our main result for this final part of the course. It tells us how to integrate out "fast" degrees of freedom to calculate Green's functions of slow degrees of freedom. Remarkably, the identities used to get this formula are exact there int a need for slow modes to actually be slow! But as we will see shortly, this method does work best when we actually do use slow modes as slow...
8.4) The memory matrix in real time

It can be instructive to re derive this formula directly in real time, to get more physical intuition for what we have actually done here (and for the name memory matrix). First, we prove a lemma
lemma: $e^{(A+B) t}=e^{A t}+\int_{0}^{t} d s e^{A s} B e^{(A+B)(t-s)} \quad(A, B$ matrices)
Proof: $\partial_{t} e^{(A+B) t}=e^{(A+B) t}(A+B)$

$$
\partial_{t}(R H S)=e^{A t} A+e^{A t} B+\int_{0}^{t} d s e^{A s} B e^{(A+B)(t-s)}(A+B)=(R H S)(A+B)
$$

Al $t=0$, both matrices are the identity. They obey same ODE wI Same initial condition, therefore are the same!

Now let's use this identity writing

The origin of the name "memory matrix" is thus because the memory matrix represents the time dependent feedback of the fast modes on the slow modes, after we try to integrate them out. In general, due to the linearity of quantum mechanics, we can always solve for the isolated dynamics of a reduced subset of the degrees of freedom without sacrificing anything! But the price we pay is non locality in time of the resulting equations. The memory matrix as we will see, is useful when the modes we have integrated out (and the resulting nonlocality...) occur on fast time scales relative to those of interest. Then an approximate locality in time can re-emerge, but with dissipation now in the picture!
8.5) Transport with weak momentum relaxation

Reference: 1612.07324

Let's now turn to an explicit example of how we can use the memory matrix to calculate interesting things about transport. We return to our canonical example of a quantum system with a continuous translation invariance that is weakly broken by some external source

$$
H=H_{0}=\int d^{d} x h(x) O(x)
$$

translation
\& perturbatively small parameter!
invariant
Here translation invariance means that there exists a momentum operator P_{x} such that $\left[P_{x}, H_{0}\right]=0$, and $\left[P_{x}, O\right]=-i \partial_{x}$
P_{x} generates spatial translations,
as It querater time translations
Let's evaluate the electrical conductivity of such a system using the memory matrix. For simplicity, assume rotational invariance. We Let the slow modes be J_{x} and P_{x}.
Proposition: $\left(J_{x} \mid P_{x}\right)=\rho$, the total charge density.
Heuristic. Note that charge conservation holds is an operator Proof "identity:

$$
\frac{\partial \rho}{\partial t}+\partial_{i} J_{i}=0
$$

Assume operators vary only in x \& t. Now consider

$$
\begin{aligned}
& X_{J_{x}(x)}^{J_{f_{x}}}=\int_{-\infty}^{\infty} d t G_{J_{x}(x) P_{x}}^{R}(t)=\int_{0}^{\infty} d t i\left\langle\left[J_{x}(t), P_{x}\right]\right\rangle \\
& =\int_{0}^{\infty} d t\left\langle-\partial_{x} J_{x}(t)\right\rangle=\int_{0}^{\infty} d t\left\langle\frac{\partial_{\rho}}{\partial t}\right\rangle=\langle p\rangle!
\end{aligned}
$$

Note: If we integrate over space: $\int d x x_{J_{x} p_{x}}=V_{0} \mid \times\langle\rho\rangle$, and we conventionally divide out by such overall volume factors: i.e.

$$
X_{J_{x}(k=0) P_{x}(k=0)}=\left\langle_{p}\right\rangle \quad \text { if } \quad P_{x}(k=0)=\frac{1}{\sqrt{v_{0}}} \int d x P_{x}(x) \text {, et }
$$

Hence, "slow" modes $J_{x} \& P_{x}$ are not independent, and well reed to be slightly careful. Next, let's calculate $M \& N$.
$N=0$ for us, by time reversal symmetry.
The calculation of M is more interesting.

$$
\begin{aligned}
& \text { The calculation of } \\
& \left.M_{P_{x}} P_{x}=\left(\dot{P}_{x}\left|q i\left(z-q \mathcal{L}_{q}\right)^{-1} q\right| \dot{P}_{x}\right) \quad\left(\operatorname{since} q \mathcal{L}_{p} \mid P_{x}\right)=i q\left(\dot{P}_{x}\right)\right) \\
& \dot{P}_{x}=i\left[H_{1} P_{x}\right]=i\left[H q, P_{x}\right]-i \int_{\text {by transationinv. }} d^{d} x h(x)\left[\theta\left(x \mid, P_{x}\right]\right. \\
& \text { operator }
\end{aligned}
$$ by translation inv. operator external source, not dynamical!

$$
=\int d^{d} x h(x) \partial_{x} \theta(x)=-\int d^{d} x \theta(x) \partial_{x} h(x)
$$

Since h was parturbatively small parameter, we conclude that $M_{P_{x}} \sim \alpha_{x} L^{2}$! More explicitly:

$$
\begin{aligned}
& \text { More explicitly. } \\
& M_{P_{x} p}(z)=\int \frac{d^{d} \lambda d^{d} x^{\prime}}{V_{0} l}\left(\partial_{x} h\right)(x)\left(\partial_{x} h\right)\left(x^{\prime}\right) \underbrace{\left(\theta(x)\left|q i(z-q \mathcal{L} q)^{-1} q\right| \theta\left(x^{\prime}\right)\right)} \\
&=\underbrace{(\theta(x)) i(z-\mathcal{L})^{-1}\left(\theta\left(x^{\prime}\right)\right)+\theta(h)}
\end{aligned}
$$

use translation invariant Hamiltonian at leading order in h! because $k \neq 0$
$\left.\left.\operatorname{Con} x_{q}\left(z-\mathcal{L}_{q}\right)^{-1} g\right) \theta\left(x^{\prime}\right)\right)=\left(\theta(x)\left|\left(z-\mathcal{L}+\mathcal{L}_{p}\right)^{-1}\right| \theta\left(x^{\prime}\right)\right)$ $\begin{array}{ll} & q \mid \theta(x)=\left(\theta(x)\left|\left(z-\mathcal{L}+\mathcal{L}_{p}\right)\right| \theta\left(x^{\prime}\right)\right) \\ =\left(\theta(x)\left|(z-\mathcal{L})^{-1}\left[1-\mathcal{L}_{p}\left(z-\mathcal{L}_{q}\right)^{-1}\right]\right| \theta\left(x^{\prime}\right)\right), & \left.\text { and }{ }_{=}{ }_{=}\left(z-\mathcal{L}_{q}\right)^{-1} \mid \theta\left(x^{\prime}\right)\right)\end{array}$

$$
\begin{aligned}
& M_{x} p_{x}|z|=\int \frac{d^{d} k}{(2 \pi)^{d}} k_{x}^{2}|h(\vec{k})|^{2} \underbrace{\left(\theta(k)\left|i(z-\mathcal{L})^{-1}\right| \theta(\vec{k})\right)}_{x} \\
& \underbrace{(\theta} \frac{1}{i z}\left[G_{\theta \theta}^{R}(\vec{k}, z)-G_{\theta \theta}^{R}(\vec{k}, 0)\right] \\
&=\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im}\left(G_{\theta \theta}^{R}(\vec{k}, \omega)\right), \text { as } z \rightarrow 0
\end{aligned}
$$

So the momentum memory matrix is given by the spectral weight of the operator which broke translation invariance! This is a very useful fact, which as we will soon see, allows for tractable computations in a number of theories...

$$
M_{J_{x} P_{x}}(z)=\left(J_{x}\left|q i\left(z-q \mathcal{L}_{q}\right)^{-1} \int d_{x}^{d}\left(-\partial_{x} h(x)\right)\right| \theta(x)\right)
$$

node, at
leading order
Translation invariance of tho implies that, like before, we need an extra $h \theta$ in $\left(z-q \alpha_{q}\right)^{-1}$ to make $k=0$ \& $k \neq 0$ modes overlap. Thus

$$
M_{J_{x} p_{x}}=\theta\left(h^{2}\right)
$$

In general, since J_{x} not conserved, we have $M_{J_{x} J_{x}}=O\left(h^{0}\right)$
Now let's put all of this together. Using the scaling for M that we have found, we have

We have essentially given a quantum mechanical, rigorous perturbative derivation of the Prude formula! If we define

Our formula for the momentum relaxation time is a non-quasiparticles generalization of Fermi's golden rule for impurity scattering - here it is the spectral weight of the inhomogeneously sourced operator that sets the disorder scattering rate.
8.6) Spectral weights and momentum relaxation times

Let's put this new formula to use, and start making predictions for the resistivity of various systems by estimating the spectral weight that will control the momentum relaxation time.
Example 1: Hydrodynamics. Let's consider a low T Fermi liquid, where we previously calculated

$$
\frac{x_{p} k^{2} v_{s}^{2}}{k^{2} v_{s}^{2}-w^{2}-i w v^{2} k^{2}}
$$

$$
\tau \tilde{v} \sim \frac{\eta}{i n}\left(2-\frac{2}{d}\right)
$$

If we couple a system to an inhomogeneous potential...

$$
\begin{aligned}
\rho_{x x} \sim \frac{m}{n e^{2} t}, \text { where } \frac{1}{t} & \sim \int d^{d} k k_{x}^{2}|\mu(k)|^{2} \times \lim _{\omega \rightarrow_{0}} \frac{I_{m} G_{\rho p}^{R}(k, \omega)}{\omega} \\
& \sim \int d^{d} k k_{x}^{2}|\mu(k)|^{2} \times \frac{x_{\rho \rho} k^{2} v_{s}^{2} \widetilde{\tau^{2}}}{\left(k^{2} v_{s}^{2}\right)^{2}+0} \\
& \sim \int d^{d} k k_{x}^{2}|\mu(k)|^{2} \eta
\end{aligned}
$$

which is precisely the inhomogeneous Gur ali effect from before.

We can also see that diffusive poles dominate the spectral weight ask $k \rightarrow 0 \ldots$ if

So, for example thermal diffusion in the $F L$ dominates as $k \rightarrow 0$, albeit the coefficient $\frac{A}{D} \sim T^{2}$ is suppressed...
Example 2: Quantum critical (scale invariant!) models. Suppose we have a system described by a scale invariant QFT where the dimensional analysis takes the following form:
$t \rightarrow \lambda^{z} t \quad(z=$ dynamic critical exponent $)$
$x \rightarrow \lambda x \quad$ (e.g. $\omega=k^{z}$ excitations?.)
$\theta \rightarrow \lambda^{-\Delta} \theta$
$\Delta=$ scaling dimension of θ !
so $G_{O \theta}^{R}(\vec{k}, \omega) \sim \int d^{d} x$ $d t e^{i k((x-y)-x)}\langle[\theta(x, t), \theta]\rangle$ dimensional analysis

$$
G_{\theta \theta}^{R} \sim G_{\theta \theta}^{R} x \lambda^{d+z-2 \Delta}
$$

Sike $T \rightarrow \lambda^{-z} T$ under rescaling as $T \sim$ energy $\sim \frac{1}{\text { time }} \cdots$ we estimate that

$$
\begin{aligned}
& \text { estimate that } \\
& \lim _{w \rightarrow 0} \frac{1}{\omega} \operatorname{In}\left(G_{\theta \theta}^{R}\right) \sim \frac{1}{T} T^{(2 \Delta-z-d) / z} \sim T^{(2 \Delta-2 z-d) / z}
\end{aligned}
$$

Now, let's inuagive we have Goursion- disorder, so $\left.1 \mu(s)\right|^{2} \sim$ coss s ?
Then $\frac{1}{\tau} \sim \int \underbrace{d^{4} k k^{2}}_{\frac{d+2}{z}} \times \lim _{\omega \rightarrow 0} \frac{G G Q}{\omega} \sim T^{2(1+\Delta-z) / z}$
This gives resistivity of critical theories perturbed by disorder!

In models of non-Fermi liquids with a Fermi surface, the exponents can be more subtle. See 1408.6549, 1401.7012
8.7) Magnetic fields

Next, let us (quickly) justify the form of the conductivity tensor in the presence of a magnetic field. For simplicity we stick to two spatial dimensions.
Since magnetic field breaks time reversal, we need to write

$$
\sigma_{A B}(\omega)=x_{A C}(M+N-i \omega x)_{C 1}^{-1} x_{D B} \text {, where } N_{A B}=\frac{1}{T}(A|\mathcal{L}| B)
$$

Let's begin by thinking about a theory w/ no disorder ℓ momentum conservation $[$ when $B=0]$. We have

$$
H=H_{0}-\int d^{2} x A_{i} J_{i}, \quad \text { wi } \quad A_{i}=\frac{B}{2} \varepsilon_{i j} x_{j}(\text { leg. })
$$

$\dot{P_{i}}=i\left[H, P_{i}\right]=B \varepsilon_{i j} J_{j}$, which can be proved by (e.g.)

$$
\dot{P}_{x}=i\left[H, P_{x}\right]=-i \int d^{2} x(-B x)\left[J_{y} / P_{x}\right]=-B \int d^{2} x x \partial_{x} J_{y}=B J_{y}
$$

Hence $N_{p_{i} p_{j}}=x_{p_{i} p_{j}}=B_{\varepsilon_{j}} x_{p_{i} J_{k}}=-B_{p} \varepsilon_{i j}$
Similarly, $N_{J_{i} P_{j}}=-B x_{J J} \varepsilon_{i j}$

When $c \infty=0$, we have

$$
\begin{aligned}
& \sigma_{i j}(w)=X_{J_{i} A}(M+N)_{A B}^{-1} X_{B J_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\sigma_{i j}-}{-}=\left(\begin{array}{ll}
a^{2} \tilde{M} & a b \tilde{M} \\
\hline a b \tilde{M} & Z+b^{2} \tilde{M}
\end{array}\right)^{-1} \text {, where } \begin{array}{ll}
a=\left(x^{-1}\right)_{J J} \\
& b=\left(x^{-1}\right)_{J P}
\end{array} \\
& \sigma_{i j}=\left(Z+b^{2} \tilde{M}-\frac{(a b)^{2}}{a^{2}} \widetilde{M}\right)^{-1}=Z^{-1} \\
& \sigma_{i j}=\frac{P}{B} \varepsilon_{i j}
\end{aligned}
$$

This is precisely the prediction we expect from the classical/quantum Hall effect.
If we now try to go back and include the momentum relaxing scattering processes, we find that If $B \sim h^{2} \sim 1 / \tau$ is pesturbatively small, we get that $\sigma_{i j}=\rho^{2}\left(\begin{array}{cc}M_{p_{x} l_{x}} & -B_{\rho} \\ B_{\rho} & M_{p_{x} p_{x}}\end{array}\right)^{-1}$, in agreement wo ar Prude \quad prediction

If the magnetic field is not perturbatively small, then we find that $\left(\sigma^{-1}\right)_{x x} \approx \frac{M_{p_{x} p_{x}}}{\rho^{2}}$, where the spectral weight can be evaluated ot finite B This result requires a lot of algebra so we wont show explicitly. 8.8) Hydrodynamics and the memory matrix

Now we will use the memory matrix to provide a more rigorous derivation of the form of hydrodynamic Green's functions, focusing for simplicity on the diffusive Green's function
If we only have a single conservation law, e.g. energy diffusion, let's define our single slow mode to be

$$
\varepsilon(\vec{k})=\frac{1}{\sqrt{v_{0}}} \int d^{d} x e^{-i k \cdot x} \varepsilon(x) \text {, if } 1+=\int d^{d} x \quad \varepsilon(x) \text {. }
$$

We know that $\partial_{t} \varepsilon(\vec{k})+i \vec{k} \cdot J_{E}(\vec{k})=0$ energy current operator is NOT conserved!
Now by the memory matrix formalism,

$$
C_{\varepsilon(k) \varepsilon(k)}(z)=C(z)=\frac{x_{\varepsilon(k) \varepsilon(k)}^{2}}{M_{q(k) \varepsilon(k)}(z)-i z_{\varepsilon(k) \varepsilon(k)}}
$$

[ho N by
time reversal!]

In general, $x_{\varepsilon(k) x_{\varepsilon}(k)}=x$ is well-behaved as $x \rightarrow 0$.
After all AT $k=0 \ldots$

$$
X=\frac{1}{V_{0} l} \frac{\operatorname{tr}\left(e^{-\beta H}(H-\langle H\rangle)^{2}\right)}{\text { thermal energy density }} Z(\beta) \quad \frac{\left\langle H^{2}\right)-\langle H\rangle^{2}}{V_{0} l}=\frac{1}{V_{0} \mid}\left(-\frac{\partial^{2}}{\partial \beta^{2}} \log Z(\beta)\right)
$$

$$
=-\frac{\partial\langle\alpha\rangle}{\partial \beta}=T^{2} \frac{\partial \hbar}{\partial T}=T^{2} c^{\text {c specific heat }}
$$

Now let's think about the form of the memory matrix

$$
\begin{aligned}
M(z) & =\left(\dot{\varepsilon}(k)\left|q i\left(z-q \mathcal{L}_{q}\right)^{-1} q\right| \dot{\varepsilon}(k)\right) \quad \text { L } \begin{array}{c}
\text { must be a "fast" } \\
\text { quantity ... this vector } \\
\text { cant over lapp twi }
\end{array} \\
& =k_{i} k_{j}\left(J_{E}^{i}(k)\left|i(z-q \mathcal{L} q)^{-1}\right| J_{E}^{j}(k)\right) \\
& =k_{i} k_{j} \sum_{i j}(z)
\end{aligned}
$$

We now claim that $\sum_{i j}$ is finite as $z \rightarrow 0$. Indeed this is sensible, since J_{E} is not a conserved degree of freedom and there are no hydrodynamic poles. Note if rotational invariant... $\sum_{i j}(z)=\sum(z) \delta_{i j}$

$$
\begin{aligned}
& \text { Hence we conclude } C(z)=\frac{x^{2}}{-i z x+k^{2} \Sigma}=\frac{1}{i z}(G^{R}(z)-\underbrace{G^{R}(0)}_{x}) \\
& \Rightarrow G_{\varepsilon \varepsilon}^{R}(\vec{k}, z)=\frac{k^{2} \sum x}{k^{2} \sum-i z x}=\frac{x^{D k^{2}}}{D k^{2}-i z} \text { if } D=\frac{\sum}{x}
\end{aligned}
$$

Hence we precisely recover the diffusive form of the hydrodynamic Green's function that we predicted previously. Lastly, let's observe that the thermal conductivity is given by

$$
\begin{aligned}
T_{k}=\lim _{\omega \rightarrow 0} \frac{1}{i \omega}\left[G_{J_{E}^{x} J_{E}^{x}}^{R}(\omega)-G_{J_{E}^{x} J_{E}^{x}}^{R}(0)\right] & =\frac{1}{T} C_{J_{E}^{x} J_{E}^{x}}(0) \\
& =\frac{1}{T} \sum_{i j}
\end{aligned}
$$

The thermal diffusion constant is $D=\frac{\sum}{x}=\frac{T^{2} \bar{k}}{T^{2} c}=\frac{\bar{k}}{c}$ which is the canonical Einstein relation

Similar derivations work for more complicated hydrodynamic theories with multiple diffusion modes, or sound modes, etc. one can also include the almost conserved quantities in this language to provide a formal justification of quasihydrodynamics
8.9) Derivation of the linearized Boltzmann equation

Our last goal for this course is to use the memory matrix to sketch a semi rigorous derivation of the quantum Boltzmann equation in linear response

$$
H=\underbrace{\sum_{p} \varepsilon_{p} c_{p}^{+} c_{p}}_{\substack{H_{0} \text { unperturbed } \\ \text { problem }}} t
$$

$$
\sum U_{p_{1} p_{2} p_{3} p_{4}} c_{p_{1}}^{+} c_{p_{2}}^{+} c_{p_{3}} c_{p_{4}}
$$

Our slow modes correspond to the quadratic modes $C_{p}^{+} C_{q}$. let's organize these slow modes as

$$
\begin{aligned}
c_{p+k / 2}^{\dagger} c_{p-k / 2} & \left.=n_{p}(k) \quad\left(\text { definition of } n_{p}(k)\right) . \quad \text { Using }\left\{c_{p}^{+}, c_{q}\right\}=\delta_{p q}\right) \\
i\left[H_{0}, n_{p}(\vec{k})\right] & =i\left(\varepsilon_{p+k / 2} c_{p+k / 2}^{+} c_{p-k / 2}-\varepsilon_{p-k_{2}} c_{p+k_{2}}^{+} C_{p-k / 2}\right) \\
& \approx(i \vec{k} \cdot \vec{V}) n_{p}(\vec{k})!
\end{aligned}
$$

So the N matrix in the memory matrix formalism:

$$
N_{n_{p}\left(k n_{q}(k)\right.}=\frac{i}{T}\left(n_{p}(k) \mid \mathcal{L} n_{q}(\vec{k})\right)=\frac{1}{T}\left(\vec { k } \cdot \vec { r } _ { p } \left(n_{p}\left(k \mid n_{q}(k)\right)=\vec{k} \cdot \vec{v}_{p} \chi_{\dot{p}} \delta_{\vec{p}}\right.\right.
$$

The memory matrix M comes from considering
$M_{n_{p} n_{g}}(z) \frac{i}{T}\left(\left.n_{p}^{r}(k)\right|_{q}\left(z-q \mathcal{L}_{q}\right)^{-1} q \mid n_{q}(k)\right)$. First note that $q \dot{n}_{q}^{\prime}(k)=i\left[U_{p_{1} \rho_{1} P_{3} P_{4}} C_{p_{1}}^{+} c_{p_{2}}^{+} C_{p_{3} C_{p_{4}}}, n_{q}(k)\right] \sim \sum U_{c}{ }^{+} c^{+} c c$ ヘ project out 2-fer min operators! (won't keep track of indices in this sketch)

$$
\begin{aligned}
& \text { Just like in our treatment of weak momentum relaxation, we write } \\
& \left.\mathcal{L}_{0}=\left[H_{0}\right)^{*}\right] \text { and } \\
& M_{n_{p} n_{q}}(z) \approx \underbrace{\frac{i}{T}\left(n_{p}(k) \mid q\left(z-\mathcal{L}_{0}\right)^{-1} q \ln \left(n_{q}(k)\right)+O\left(U^{3}\right)\right.}_{\text {weak }}
\end{aligned}
$$

This object is $\lim _{\omega \rightarrow 0} 1$ wm $\left.\left.\left.\operatorname{Im}_{m}^{R} G_{c^{+} c^{+} c c, c^{+} c^{+} c c}(\omega)\right)\right) U\right)^{2}$ neglecting sum over indices...

That spectral weight can be evaluated by a tedious "field theory" calculation. It gives

$$
\begin{aligned}
& \lim _{w \rightarrow 0} \frac{1}{w} \operatorname{Im}\left(G_{c_{1}^{+} c_{2 c c 4} c_{1} c_{1}^{+} c_{2}^{+} c}(w)\right)=f_{F}\left(\varepsilon_{1}\right) f_{F}\left(\varepsilon_{2}\right)\left(1-f_{F}\left(\varepsilon_{3}\right)\right)\left(1-f_{F}\left(\varepsilon_{4}\right)\right) \\
& \text { part of... } \times \pi \beta \delta\left(\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}\right)
\end{aligned}
$$

which was precisely' the coefficient that showed up in our collision integral $\langle p| W|q\rangle$!
In the Kadanoff-Martin formalism, we found that

$$
\begin{aligned}
& G_{n_{p p^{\prime} r}}^{R}(\vec{k}, \omega)=X_{n_{p} n_{r}}\left(1+i \omega\left(W_{n_{r} n_{r^{\prime}}}+i \vec{k}^{2} \vec{v}_{\vec{r}} x_{\vec{r} \vec{r}^{\prime}}-i \omega \vec{x}_{\vec{r} \vec{r}^{\prime}}\right)^{-1} \chi_{\vec{r} \vec{r}}\right) \text {, } \\
& \text { implying that } C_{n_{p} n_{q}}(\vec{k}, \omega)=\frac{1}{i \omega}\left(G_{n_{p} n_{q}}^{R}(\omega)-G_{n_{p} n_{q}}^{R}(0)\right) \\
& =\left[\chi(W+i<\cdot \stackrel{\rightharpoonup}{v} x-i \omega x)^{-1} x\right]_{n_{\vec{p}-n_{\vec{q}}}^{q}}^{\left.\right|_{\vec{p} \vec{q}}}
\end{aligned}
$$

This precisely agrees with our prior identification of the streaming terms in the kinetic equations as N , and the linearized collision integral as M

