
Physics 7450: Solid-State Transport Fall 2019

Homework 1

Due: 3:00 PM, Friday, September 20.

Problem 1 (Baber scattering): Consider a conductor with an electron band and a hole band. The number
density of electrons/holes in equilibrium is ne,h, and the effective masses of electrons and holes are me,h

respectively. In general, me 6= mh. Let Pe,h denote the momentum density of the electrons and holes,
respectively. The current Je,h of electrons/holes is given by

Je = − e

me
Pe, (1a)

Jh =
e

mh
Ph. (1b)

Suppose that there are three scattering mechanisms in the problem: electron-hole (γe,h), electron-
impurity (Γe), and hole-impurity (Γh). Assume the canonical temperature dependences for electron-
electron (and electron-hole!) and electron-impurity scattering. Finally, assume that while impurity colli-
sions are momentum relaxing, electron-hole collisions conserve the combined momentum of electrons and
holes.

(a) Following the logic that we used to derive the Drude model, argue that Newton’s laws take the form

eneE = −ΓePe − γePe + γhPh, (2a)

−enhE = −ΓhPh − γhPh + γePe. (2b)

(Since the Drude model (and this one) appear (at this time) highly phenomenological, you should
really be taking these equations as defining γe,h and Γe,h. So your primary purpose here is to justify
the crude model above, given the physical assumptions described above.)

From now on, you can take Γe = Γh = Γ , γe = γh = γ, and Γ � γ. This limit can be realistic in low
density semiconductors. Also assume that ne,h and me,h are temperature independent.

(b) Calculate the electrical resistivity ρ. Argue that ρ will be approximately temperature independent
unless ne ≈ nh, in which case ρ ∝ T 2. This mechanism for ρ ∝ T 2 described in this problem is called
Baber scattering. What is the physical origin of Baber scattering?

(c) If the material has two electron bands, is it possible to find an analogue of Baber scattering, with
ρ ∝ T 2 even if Γ � γ? Explain your answer intuitively, and check it by generalizing the above model.

Problem 2 (Planckian bounds): A rather popular idea in the literature as of late is that a metal with
strongly correlated electrons has a Planckian limited resistivity, where the Drude transport time obeys
the bound

τtr &
~
kBT

. (3)

Like the Mott-Ioffe-Regel bound, the inequality here is only “heuristic”; the bound is not rigorous. The
motivation for this bound is either (i) that it “follows” from the Heisenberg energy-time uncertainty
principle, or (ii) that it follows from dimensional analysis, assuming that all microscopic scales like the
Fermi energy are irrelevant for low energy dynamics and transport.
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(a) Many metals, even at room temperature, can appear to come close to saturating (3). Based on the
temperature dependence, what would be the “canonical” explanation for the resistivity?

(b) Is (3) always obeyed in a metal, in the real world?

(c) Above what temperature T would it be possible for a metal to violate the Mott-Ioffe-Regel bound
but obey (3)? Estimate the answer in Kelvin for metals with vF = 104, 105, 106 m/s. Is it possible to
observe this effect experimentally?

Problem 3 (Improving the relaxation time approximation): Here we derive another bound on the resis-
tivity in our formal kinetic theory of transport.

(a) Explain why the fluctuations in the number density of fermionic excitations is given by 〈Φ|n〉, where

|n〉 =

∫
ddp |p〉. (4)

(b) Explain why if carrier number is a conserved quantity, then

〈p|W|p〉 =
1

(2π~)d

(
−∂fF(p)

∂ε

)[
g(p,p′)− δ(p− p′)

∫
ddq g(p,q)

]
(5)

where g is a “symmetric” function:(
−∂fF(p)

∂ε

)
g(p,q) =

(
−∂fF(q)

∂ε

)
g(q,p) (6)

(c) Consider the modified (linearized) collision integral

〈p|W̃|p′〉 = −δ(p− p′)
1

(2π~)d

(
−∂fF(p)

∂ε

)∫
ddq g(p,q). (7)

Let ρ be the resistivity with collision integral W and ρ̃ be the resistivity with W̃. Find a simple expres-
sion for ρ̃, and interpret the answer as a generalized relaxation time approximation. For simplicity,
you can assume that the resistivity is isotropic.

(d) Show that 2ρ̃ ≥ ρ.

Problem 4 (Thermoelectric transport in graphene): Graphene is a two dimensional honeycomb lattice
of carbon:

2



A tight-binding model for conduction electrons is given by

H = −t
∑
i∼j

c†iσcjσ, (8)

where t ≈ 2.8 eV. The lattice spacing between carbon atoms is a ≈ 0.14 nm. The unit cell of the
honeycomb lattice consists of one red and one blue atom, as shown in the figure.

(a) First find the Brillouin zone for the honeycomb lattice. Use that the vectors separating adjacent
points in the lattice are

a1 = ax̂, (9a)

a2 = a

√
3ŷ − x̂

2
, (9b)

a3 = a
−
√

3ŷ − x̂

2
. (9c)

(b) Show that the dispersion relation is

εσ(k) = ±t
∣∣∣eik·a1 + eik·a2 + eik·a3

∣∣∣ . (10)

(c) Based on where carbon lies in the periodic table, argue that it is natural for “charge neutral” graphene
to have exactly one electron per carbon atom in the conduction band described by (8). What is the
Fermi energy? Explain why, at low temperatures, it is acceptable to approximate the dispersion of
graphene with

εa(p) = ±~vF|p| (11)

where a = 1, . . . , N and p a (relative) momentum. What is N? Some different “flavors” of fermion
may come from spin, while others may come from the band structure. What is vF, including its
(estimated) numerical value? At what temperature does (11) break down?

(d) Using the qualitative form of the band structure (11), together with the relaxation time approximation,
use the Boltzmann equation to calculate σij , αij and κ̄ij as a function of chemical potential µ and
temperature T , along with the parameters vF and relaxation time τ .

(e) Plot L/L0 as a function of µ/T . Explain why the Wiedemann-Franz and Mott laws are violated
when |µ| . T . (This effect is called bipolar diffusion.) Can κ/σ deviate arbitrarily from the
Wiedemann-Franz law?

When electron-electron interactions in graphene become strong, it can be more sensible to use a “hy-
drodynamic” description for thermoelectric transport. Due to the “relativistic” nature of the dispersion
relation, the momentum density and the energy current are essentially identical, up to a factor of Fermi
velocity:

JE = Pv2F. (12)

We can follow the spirit of the Drude model to come up with an alternative theory of transport, where
the charge current is

J =
−en
W

JE + σ0

(
E +

µ

T
∇T
)

(13)

where E is the external electric field, ∇T is the external temperature gradient, W is the enthalpy, and
JE is the energy current. The momentum balance equation becomes

− enE − s∇T = ΓP (14)
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Here Γ is the momentum relaxation rate, which in graphene comes from electron-impurity scattering at
low temperature.

(f) Find expressions for σ, α, κ̄ and κ in the “hydrodynamic” theory. You can use the identity

W = −enµ+ Ts (15)

to simplify your answers.

(g) If impurity scattering is very weak, can this “hydrodynamic” theory for transport be distinguished
from the bipolar diffusion theory?
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