Physics 7450: Solid-State Transport Fall 2019

Homework 2

Due: 3:00 PM, Friday, October 4.

Problem 1 (Hot and cold fermions): A toy model for certain “strange metals” with unusual 7T-linear
resistivity at low temperatures, including Sr3RusO7, is a weakly interacting electron gas with the following
unusual band structure, consisting of a large “cold” Fermi surface along with some small “hot” Fermi
surfaces, as shown in the figure. While the figure may appear two dimensional, you should consider the hot
and cold Fermi surfaces as (approximately) spheres of radius ky, and k. respectively in the d-dimensional
Brillouin zone.
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It is possible for the hot density of states to have a very sharp cusp, as shown in the figure, if the hot
band has a very flat minimum.

The purpose of this problem is to estimate the electron-electron scattering contribution to the resis-
tivity of a metal with this Fermi surface. As this calculation gets very involved rather quickly, you should
make a number of simplifying assumptions. Firstly, neglect all O(1) coefficients and set i = 1. Secondly,
assume the electron-electron collision integral is structureless:
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The momentum integral above runs over the whole Brillouin zone, thus including both cold and hot
fermions. Thirdly, approximate Fermi functions with step functions:

fe(e) ~O(u+T —e), (2a)
1— fr(e) ~O(e —pu+T). (2b)



Fourth, in integrals you may always estimate that the group velocity of a cold fermion is ~ v, the velocity
of a hot fermions is ~ wvy. Lastly, you may estimate kc > kn, vc > vn, W = vpky, and that most of
the hot fermions lie below the chemical potential. It may be useful to define W = min(7", W) for the
manipulations below.

(a) First, estimate the resistivity arising from ¢ 4+ ¢ — ¢ + ¢ scattering (i.e. electrons scattering on the
cold Fermi surface). Show that
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The calculation is similar to what is in the lecture notes, but you need to estimate all integrals, up

to dimensionless constants.
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(b) Next, estimate the resistivity arising from ¢ + ¢ — ¢ + h scattering; show that
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Is it possible for this contribution to be larger than the contribution arising from only the cold

fermions?

(c) Argue that the remaining scattering processes (involving 2 or more hot electrons as either ingoing
or outgoing states) can be neglected when estimating resistivity, because they are either generically
momentum conserving processes, or because they involve particles on only small portions of the Fermi
surface. Use the variational principle with clever trial functions to show that either kind of scattering
process can essentially be ignored when estimating the resistivity.

Problem 2 (Electronic scattering in graphene): In some metals, the band structure already leads to
non-trivial structure in the electron-electron collision integral. As an example, consider the low energy
effective description of graphene, which has a low energy effective dispersion relation

e(p) = vr|p| (5)

For this problem, you should neglect all momentum dependence in the interacting terms in the electronic
Hamiltonian, as in (1), and also ignore umklapp processes. It is conventional in graphene to define a hole
as the absence of an electron in one of the € < 0 states.

(a) First, consider two electrons scattering off of each other. Show that in two dimensions, with the
relativistic dispersion relation, the collision integral (@|W|®) diverges due to collisions between two
electrons whose momenta p1 o are nearly parallel. This is called a collinear scattering singularity,
and must be resolved via “non-perturbative” screening effects.

(b) It is natural to propose a scattering process — pair creation — in which an electron spontaneously
creates two particles: one electron and one hole. Keeping in mind what we said a hole was previously,
sketch the band structure of graphene along with the initial and final states of two physical quasipar-
ticles which would correspond to the pair creation process. Then argue that due to the relativistic
dispersion relation, the rate of pair creation is formally zero if the collision integral only consists of
two body scattering.

(c) Guess the qualitative structure of a 3-body contribution to the collision integral, neglecting the
dependence of scattering rates on incoming/outgoing momenta. Then argue that if the Hamiltonian
had 3-body scattering (H = eclc+ U’clclclece, for example), the rate of pair creation would be finite.



Problem 3 (Thermal conductivity of amorphous solids): Consider the propagation of long wavelength
acoustic phonons of wave number ¢ in an amorphous solid, which is highly disordered on extremely short
length scales. This leads to the following schematic form for the phonon-impurity scattering time:
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where pg is a constant. Sketch the thermal conductivity as a function of temperature 7.

Problem 4 (High temperature resistivity of semiconductors): Consider the following model for a semi-
conductor: there is a single electron band with dispersion
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The chemical potential p is taken to be comparable to temperature T, such that the Fermi surface is
significantly smeared out. Consider an acoustic phonon with velocity vpn < vp = /2u/m, and consider
the usual electron-phonon scattering process e <+ e+ p, with a collision integral analogous to the one used

in the lecture notes.

(a) Argue that the energy carried by the phonon will be extremely small. Conclude that the phonon col-
lision integral can thus be approximated by the impurity collision integral, with an effective impurity
scattering time 7 ~ 771,

(b) What is the temperature dependence of electrical resistivity due to electron-phonon scattering?



