
Physics 7450: Solid-State Transport Fall 2019

Homework 4

Due: 3:00 PM, Friday, November 1.

Problem 1 (Variational principle for hydrodynamic transport): Consider a hydrodynamic theory for a
Galilean-invariant Fermi liquid. The hydrodynamic transport equations read

∂iJi = 0, (1a)

∂iQi = 0, (1b)

n∂iµ+ s∂iT − ∂j
(
η

[
∂jui + ∂iuj −

2

d
δij∂kuk

]
+ ζδij∂kuk

)
= −enEi − s∂iText (1c)

where the charge and heat current are

Ji = −enui, (2a)

Qi = T0sui − κ0(∂iT + ∂iText) (2b)

Here Ei and −∂iText denote the small external electric fields and temperature gradients used to drive
thermoelectric transport, while µ, T and ui denote the small perturbations of the fluid away from equi-
librium in response to the sources. Suppose that the parameters κ0, η, n and s may vary in space, but
the equilibrium temperature T0 does not vary with position. Define the functional

R[Ji, Qi] =

∫
ddx
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δij∂k
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n
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ζ
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T0κ0

(
Qi +

T0s

en
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)2
]
. (3)

where V represents the volume of space.

(a) Suppose we happened to know the profile of the charge current Ji and the heat current Qi, as a
function of the sources Ei and −∂iText, on the exact solution to (1). Call these special profiles
Ji = J∗i and Qi = Q∗i . Show that

R[Ji, Qi] =
(
J i Qi

)( σ T0α
T0α̃ T0κ̄

)−1
ij

(
J j
Qj

)
(4)

where

J i =

∫
ddx

V
Ji, (5a)

Qi =

∫
ddx

V
Qi, (5b)

and the thermoelectric conductivity matrix is given by(
J i
Qi

)
=

(
σ T0α
T0α̃ T0κ̄

)
ij

(
Ej

−T−10 ∂jText

)
(6)

Hint: Begin by multiplying (1c) by ui and integrating over space.
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(b) Now consider R[Ji, Qi] as a function of arbitrary currents Ji and Qi subject to the constraints (1a),
(1b) and (5). Prove that

R[J∗i , Q
∗
i ] ≤ R[Ji, Qi]. (7)

Give a physical interpretation to this variational principle.
Hint: Proceed by mirroring our proof of the variational principle in the kinetic theory of transport,
writing Ji = J∗i + J̃i and Qi = Q∗i + Q̃i. What are the constraints on J̃i and Q̃i? Expand out R[Ji, Qi]
and show that similar manipulations to the previous part imply that the linear terms in deviations
J̃i and Q̃i vanish.

(c) Plug in the ansatz

Ji = −en0u0i , (8a)

Qi = T0s0u
0
i (8b)

with u0i a constant vector to this variational principle. Take n0 and s0 to be the average values of n
and s respectively. Compare R to the perturbative result for ρij in the lecture notes, and comment
on any similarities.

(d) Use this variational principle to exactly solve the hydrodynamic transport problem in a fluid in one
spatial dimension (d = 1): i.e., solve for σ, α and κ̄ as arbitrary functions of ζ, n and s.

Problem 2 (Long lived quadrupolar fluctuations): Suppose that we modify our relaxation time model
of a two dimensional isotropic Fermi liquid, such that the collision integral is

W|m〉 =


0 |m| ≤ 1
γ′|m〉 |m| = 2
γ|m〉 |m| > 2

. (9)

Here |m〉 represent the angular harmonic fluctuations Φ = eimθ, as discussed in the lecture notes.

(a) Following the derivation in the lecture notes when γ′ = γ, show that

〈0|(W + ik · v)−1|0〉 =
ν√

γ2 + (kvF)2 + 2γ′ − γ
(10)

You may find it useful to use Mathematica to do symbolic matrix inversion. Here ν represents the
density of states of the Fermi liquid.

(b) Give a heuristic sketch of the temperature dependence of the resistivity in a metal with long wave-
length inhomogeneity on the length scale ξ. Assume the disorder is perturbatively weak. Your sketch
should depend on the ratio γ′/γ.

Problem 3 (Terahertz radiation): Consider an electron liquid in a one dimensional channel of length L,
parameterized by 0 ≤ x ≤ L. Beyond linear response, assume that the ideal hydrodynamic equations are

∂tn+ ∂x(nu) = 0, (11a)

∂t(mnu) + ∂x
(
mnu2

)
+mv2s ∂xn = 0. (11b)

Here m, vs and η are constants corresponding to effective mass, speed of sound and shear viscosity,
respectively.

2



(a) Show that any uniform density n(x, t) = n0 and any uniform velocity u(x, t) = u0 solve the nonlinear
equations above.

(b) For the moment, set η = 0. Suppose that the boundary conditions on the fluid are

n(x = 0, t) = n0, (12a)

n(x = L, t)× u(x = L, t) = n0u0. (12b)

Now let us look at the stability of the homogeneous solution. Let

n(x, t) = n0 + δn(x, t), (13a)

u(x, t) = u0 + δu(x, t). (13b)

Expand the hydrodynamic equations to linear order in perturbations, and determine the boundary
conditions on δn and δu.

(c) Assuming that 0 < u0 < vs, show that the normal modes of the cavity (i.e. solutions which have time
dependence δn(x, t) = δn(x)e−iωt, and δu(x, t) = δu(x)e−iωt) have complex frequency ω given by

ωn = ±
πn
(
v2s − u20

)
2Lvs

+ i
v2s − u20

2Lvs
log

vs + u0
vs − u0

, (n = 1, 3, 5, . . .). (14)

(d) In a proposed device using an electron liquid in graphene, L = 10−6 m and vs = 106 m/s. Show that
the frequency of the hydrodynamic oscillations above is ∼ 1 THz. This is a notoriously challenging
frequency of electromagnetic radiation to generate, and it has been proposed that the hydrodynamic
instability above could drive a coherent source of THz radiation.

If the decay rate of propagating sound waves is Γs(k, ω), then (14) is approximately modified to

ωn = ±
πn
(
v2s − u20

)
2Lvs

+ i
v2s − u20

2Lvs
log

vs + u0
vs − u0

− iΓs(kn) (15)

where kn is an appropriate wave number for harmonic n.

(e) Argue that if τee is a momentum-conserving scattering rate between electrons, that the approximate
functional form

Γs(k) =
v2F
8

k2τee

1 + 1
4(τeevsk)2

(16)

qualitatively interpolates between the known decay rates of first sound waves and zero sound waves.
Use the known hydrodynamic coefficients for the isotropic two dimensional Fermi liquid in the relax-
ation time model discussed in the lecture notes. Then combine (15) and (16) and sketch the region
in the (u0, τee) plane where the instability exists.

(f) Now suppose that there is momentum relaxing scattering that occurs on the time scale τimp. Following
the discussion in the lecture notes on quasihydrodynamic sound modes, estimate the contribution of
this momentum relaxing scattering to Γs. Then, estimate the minimal value of the mean free path
for momentum-relaxing collisions, below which in the graphene device above it would be impossible
to observe an instability. Compare your result to the standard estimated mean free path of 10−6 m
in a reasonable quality graphene device.
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