Physics 7450: Solid-State Transport Fall 2019

Homework 5

Due: 3:00 PM, Friday, November 22.

Problem 1 (Collisionless magnetotransport in two dimensions): In this problem, we will study the Hall
conductivity of two dimensional metals in the limit where there is no scattering — each quasiparticle only
moves in the background magnetic field along the Fermi surface. The tool we will use is Chambers’

formula:
0ij =€2/(2d;—,%2 (-%) /Odt e'/"v;(p)v; (p(t))- (1)

— 0o
Here 7 is a regulator; the limit 7 — oo must always be taken at the end of a calculation, and p(t) solves

dp;
dt

= —6B€Z'j’l)j(p). (2)

with the boundary condition on the final time p(0) = p. In this problem, we take the low temperature
limit 7" — 0, so the Fermi surface is well defined.

Begin by assuming the Fermi surface consists of a single closed contour, as in the figure below. The
occupied electronic states are more darkly shaded.

(a) Show that
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and justify this answer on physical grounds, without resorting to (1).
Hint: Start by evaluating the ¢ integral in (1), using (2). You should take 7 — oo.



Next, consider the following open Fermi surface. The lengths in the Brillouin zone of each segment
are shown; assume that each segment is oriented exactly along either the x or the y direction, as depicted.
Assume the local density of states is v everywhere on the Fermi surface, and that the magnitude of the
Fermi velocity is vp everywhere along the Fermi surface.

(b) Using (1), calculate o,y for the metal described above. Show that
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(c) If an experimentalist measures o,,,, would they measure the number of electrons in the metal? That
is, does (3) hold for o,,? Why or why not?

Problem 2 (Hall viscosity and fluid flows): Consider a fluid in the absence of an external magnetic field
or momentum relaxation, but with a non-vanishing Hall viscosity. Such a fluid could arise, for example,
in a thin film of chiral liquid crystals.

(a) Write down the coupled hydrodynamic equations for number/mass and momentum conservation
within linear response about equilibrium n = ng and u; = 0, assuming time-independent solutions.
Show that you may write

u; = €059 (5)

and that the linearized hydrodynamic equations reduce to
9;0,0;0;1) = 0. (6)

Conclude that Hall viscosity can only modify flows by modifying the boundary conditions, and/or
can only be measured through its effects at boundaries.

(b) As an example of the effect of Hall viscosity, consider a pressure gradient applied down a long nar-
row channel of width w. Solve the hydrodynamic equations with no-slip boundary conditions, and
assuming no fluid flows through the walls of the channel. Then calculate the forces per unit length
acting on each wall of the channel, and comment on what Hall viscosity does.

Hint: we solved a (more complicated) version of this problem in the lecture notes.



Problem 3 (Sound waves in a magnetic field): Neglecting derivative corrections to the currents (i.e.
viscosities or incoherent conductivity), write down the linearized hydrodynamic equations for charge and
momentum conservation, in the presence of a weak magnetic field. Find the dispersion relations w(k)
for the quasinormal modes exactly (within these approximations), and describe what happens to sound
waves in a magnetic field.

Problem 4 (Spectral weight and work): Consider a many-body system with equilibrium Hamiltonian
Hy, weakly perturbed by the operator O in a time-dependent manner as follows:

H(t) = Hp — h(t)O. (7)
Treat h(t) as perturbatively small, and suppose h(t) vanishes sufficiently far in the past.

(a) At times t — —o0, p(t) = po, the thermal density matrix. Find an expression, valid to linear order in
h, for the perturbed density matrix p(¢) by solving the Schrodinger equation.

(b) Calculate the work done on the system per unit time, as defined by

dw d
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to order O(h?). Now integrate this over time to evaluate the total work performed. Show that the
total work Wit performed is

W = [ 52 wlh(e)Pin (G50 (w) 9)

Give a physical justification for the positivity constraint wlm (G(Roo(w)) > 0 that we derived in the
lectures notes using more rigorous arguments.



