
PHYS 7810: Hydrodynamics Spring 2024

Homework 1

Due: February 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Microscopic model of a random walk): In Lectures 1 and 2 we discussed various cartoons
for a random walk. These theories can be thought of as the effective theory for a more microscopic model,
one of which we will consider in this problem: a “free particle” in one dimension which can exchange
kinetic energy with a thermal bath. Consider a particle of mass m with position x and momentum p,
with MSR Lagrangian (here γ and η are constants)

L = πẋ+ σṗ− π p
m

+ σ (iγσ + ηp) . (1)

A:10 Give a clear physical interpretation of this theory.

A1. What would be the naive (noise-free) equations of motion? What is the noise?

A2. What is the Itō Fokker-Planck equation for this stochastic theory?

B:10 Let us now discuss the symmetries of this theory.

B1. Argue that this MSR Lagrangian is time-reversal symmetric with

Φ = β
p2

2m
. (2)

What constraint on β must be obeyed?

B2. Identify any strong and weak continuous symmetries of the theory.

C:10 This problem is simple enough that we can actually compute explicitly the momentum two-point
correlation function (take averages in the stationary state)

Cp(t) = 〈p(t)p(0)〉. (3)

Show that for some constant K (which you need to fix):1

Cp(t) = Ke−η|t|. (4)

D:15 Let us now understand the transition to the random walk effective theory.

D1. Calculate the position correlation function

Cx(t) =
〈

[x(t)− x(0)]2
〉
. (5)

D2. In what limit does this answer reproduce the predictions of Lectures 1 and 2? Does the conclusion
make physical sense given the microscopic model?

1Hint: This is probably easiest to do using the Langevin picture!
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Problem 2 (Planetary orbit):20 Consider a planet of mass m interacting with a sun of mass M � m.
For simplicity you can treat the sun as stationary at (x, y, z) = (0, 0, 0) and restrict to studying just
the motion of the planet directly. The classical Hamiltonian phase space for the dynamics thus has six
coordinates, which you can label as (xi, pi) for i = x, y, z.

1. If the planet and sun interact via Newtonian gravity, what is the classical Hamiltonian for this system?
You should treat the dynamics as non-relativistic.

2. Write down the MSR Lagrangian for this dissipationless Hamiltonian dynamics.

3. Because the planet has internal dynamics, it is possible for energy not to be conserved; however no net
torques can act on the orbiting planet. Based on this fact, describe the most general possible time-
reversal-symmetric Gaussian noise that can be added to the system. For simplicity, you can continue
to use the MSR formalism.

4. For planetary sized objects, we might assume that if Φ = βH, then β → ∞ is a sensible limit (noise
will be negligible). Describe qualitatively what will happen at late times for generic initial conditions.

Problem 3 (Thermal activation energy): A common physical argument is that the time it will take for
a particle to hop over an energetic barrier of height U scales as

τ ∼ exp[U/T ] (6)

at temperature T .
In this problem we will use our dissipative effective theories for thermal systems to justify this claim.

For simplicity, we focus on an (overdamped) one-dimensional degree of freedom x with potential energy
V (x); we saw in Lecture 3 that the Fokker-Planck equation for such a system was:

∂tP = ∂x
[
γ(x)

(
∂x + βV ′(x)

)
P
]
, (7)

for some generic γ(x). Here, you may take γ to be a constant for simplicity.

A:10 Since (7) is linear, we can find its general solution by finding a Green’s function for initial condition
P (x, 0) = δ(x− x′). The resulting Green’s function is denoted with

P (x, t|x′, 0) = 〈x|e−Ŵ t|x′〉, (8)

using the notation from Lecture 3.

By performing some quick manipulations on (8), show that P (x, t|x′, 0) obeys both (7) and the back-
ward Fokker-Planck equation

∂tP =
(
∂x′ − βV ′(x′)

)
(γ∂x′P ) . (9)

B:15 The backward Fokker-Planck equation is useful because it is well-suited to answer the following ques-
tion: how long does it take for a particle to leave interval S = [−a, a]? The reason this problem is
subtle is that at time τ , we should only keep track of the trajectories which obey x(t) ∈ S for all
0 < t < τ . A clever mathematical way to do this is to find the special solution G0 to (9) subject to
the boundary conditions

G0(±a, t > 0|x′, 0) = 0, (10a)

G0(x ∈ S, 0|x′, 0) = δ(x− x′). (10b)

We can intuitively think of this as removing a particle whenever it hits x = ±a, thus keeping only the
particles that stay trapped inside S in the remainder of the dynamics.

2



B1. The solution G0 will not be a well-defined probability distribution on x (which should make sense
given the intuitive argument above). Nevertheless, explain why

G(x′, t) =

a∫
−a

dx G0(x, t|x′, 0) (11)

can be interpreted as the probability that a particle starting at x′ has not escaped after time t.2

B2. Explain why the average time τ it takes for a particle that starts at x′ to hit the boundary is:

τ(x′) = −
∞∫
0

dt t∂tG(x′, t). (12)

B3. Show that (
∂x′ − βV ′(x′)

)
γ∂x′τ(x′) = −1. (13)

C:10 To find a closed form answer, consider the potential

V (x) =

{
U |x|/a |x| ≤ a
U(2a− |x|)/a x > a

. (14)

Assume the particle starts at x = 0. Do you reproduce (6), or something “like it”, when calculating
the time for the particle to escape S?

Problem 4 (Long-range random walk):15 Consider a random walking particle where

xn =

n∑
k=1

zk, (15)

where the zk are independent and identically distributed random variables with probability density

p(z) =
Γ(α2 )

√
πΓ(α−12 )

aα−1

(x2 + a2)α/2
. (16)

Assume that α > 1, so that (16) is well-defined as a probability distribution.
Let τ be the time step between random walks, such that xn = x(nτ). We want to take a continuum

limit where a→ 0 and τ → 0.

1. Show that a formal Fokker-Planck equation is

∂tP (x, t) =

∞∫
−∞

dy w(y)P (x− y, t). (17)

What should w(y) be?

2. Discuss the interpretation of (17), given (16). In particular, are there values of α < ∞ for which
the Fokker-Planck equation will (approximately) reduce to the one for strictly local random walks,
discussed in Lecture 2? How should a scale with τ so that the continuum limit of (17) is well-behaved?

2Hint: For |x| < a, G0 obeys the ordinary Fokker-Planck equation as well. Show that ∂tG is captured wholly by boundary
terms, and thus reach the desired conclusion.
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