## Homework 1

## Due: February 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Microscopic model of a random walk): In Lectures 1 and 2 we discussed various cartoons for a random walk. These theories can be thought of as the effective theory for a more microscopic model, one of which we will consider in this problem: a "free particle" in one dimension which can exchange kinetic energy with a thermal bath. Consider a particle of mass $m$ with position $x$ and momentum $p$, with MSR Lagrangian (here $\gamma$ and $\eta$ are constants)

$$
\begin{equation*}
L=\pi \dot{x}+\sigma \dot{p}-\pi \frac{p}{m}+\sigma(\mathrm{i} \gamma \sigma+\eta p) . \tag{1}
\end{equation*}
$$

C: This problem is simple enough that we can actually compute explicitly the momentum two-point correlation function (take averages in the stationary state)

$$
\begin{equation*}
C_{p}(t)=\langle p(t) p(0)\rangle . \tag{3}
\end{equation*}
$$

Show that for some constant $K$ (which you need to fix): ${ }^{1}$

$$
\begin{equation*}
C_{p}(t)=K \mathrm{e}^{-\eta|t|} \tag{4}
\end{equation*}
$$

D: Let us now understand the transition to the random walk effective theory.
D1. Calculate the position correlation function

$$
\begin{equation*}
C_{x}(t)=\left\langle[x(t)-x(0)]^{2}\right\rangle . \tag{5}
\end{equation*}
$$

D2. In what limit does this answer reproduce the predictions of Lectures 1 and 2? Does the conclusion make physical sense given the microscopic model?

[^0]Problem 2 (Planetary orbit): Consider a planet of mass $m$ interacting with a sun of mass $M \gg m$. For simplicity you can treat the sun as stationary at $(x, y, z)=(0,0,0)$ and restrict to studying just the motion of the planet directly. The classical Hamiltonian phase space for the dynamics thus has six coordinates, which you can label as $\left(x_{i}, p_{i}\right)$ for $i=x, y, z$.

1. If the planet and sun interact via Newtonian gravity, what is the classical Hamiltonian for this system? You should treat the dynamics as non-relativistic.
2. Write down the MSR Lagrangian for this dissipationless Hamiltonian dynamics.
3. Because the planet has internal dynamics, it is possible for energy not to be conserved; however no net torques can act on the orbiting planet. Based on this fact, describe the most general possible time-reversal-symmetric Gaussian noise that can be added to the system. For simplicity, you can continue to use the MSR formalism.
4. For planetary sized objects, we might assume that if $\Phi=\beta H$, then $\beta \rightarrow \infty$ is a sensible limit (noise will be negligible). Describe qualitatively what will happen at late times for generic initial conditions.

Problem 3 (Thermal activation energy): A common physical argument is that the time it will take for a particle to hop over an energetic barrier of height $U$ scales as

$$
\begin{equation*}
\tau \sim \exp [U / T] \tag{6}
\end{equation*}
$$

at temperature $T$.
In this problem we will use our dissipative effective theories for thermal systems to justify this claim. For simplicity, we focus on an (overdamped) one-dimensional degree of freedom $x$ with potential energy $V(x)$; we saw in Lecture 3 that the Fokker-Planck equation for such a system was:

$$
\begin{equation*}
\partial_{t} P=\partial_{x}\left[\gamma(x)\left(\partial_{x}+\beta V^{\prime}(x)\right) P\right], \tag{7}
\end{equation*}
$$

for some generic $\gamma(x)$. Here, you may take $\gamma$ to be a constant for simplicity.
A: Since (7) is linear, we can find its general solution by finding a Green's function for initial condition $P(x, 0)=\delta\left(x-x^{\prime}\right)$. The resulting Green's function is denoted with

$$
\begin{equation*}
P\left(x, t \mid x^{\prime}, 0\right)=\langle x| \mathrm{e}^{-\hat{W} t}\left|x^{\prime}\right\rangle, \tag{8}
\end{equation*}
$$

using the notation from Lecture 3.
By performing some quick manipulations on (8), show that $P\left(x, t \mid x^{\prime}, 0\right)$ obeys both (7) and the backward Fokker-Planck equation

$$
\begin{equation*}
\partial_{t} P=\left(\partial_{x^{\prime}}-\beta V^{\prime}\left(x^{\prime}\right)\right)\left(\gamma \partial_{x^{\prime}} P\right) . \tag{9}
\end{equation*}
$$

B: The backward Fokker-Planck equation is useful because it is well-suited to answer the following ques- tion: how long does it take for a particle to leave interval $S=[-a, a]$ ? The reason this problem is subtle is that at time $\tau$, we should only keep track of the trajectories which obey $x(t) \in S$ for all $0<t<\tau$. A clever mathematical way to do this is to find the special solution $G_{0}$ to (9) subject to the boundary conditions

$$
\begin{align*}
G_{0}\left( \pm a, t>0 \mid x^{\prime}, 0\right) & =0  \tag{10a}\\
G_{0}\left(x \in S, 0 \mid x^{\prime}, 0\right) & =\delta\left(x-x^{\prime}\right) \tag{10b}
\end{align*}
$$

We can intuitively think of this as removing a particle whenever it hits $x= \pm a$, thus keeping only the particles that stay trapped inside $S$ in the remainder of the dynamics.

B1. The solution $G_{0}$ will not be a well-defined probability distribution on $x$ (which should make sense given the intuitive argument above). Nevertheless, explain why

$$
\begin{equation*}
G\left(x^{\prime}, t\right)=\int_{-a}^{a} \mathrm{~d} x G_{0}\left(x, t \mid x^{\prime}, 0\right) \tag{11}
\end{equation*}
$$

can be interpreted as the probability that a particle starting at $x^{\prime}$ has not escaped after time $t .{ }^{2}$
B2. Explain why the average time $\tau$ it takes for a particle that starts at $x^{\prime}$ to hit the boundary is:

$$
\begin{equation*}
\tau\left(x^{\prime}\right)=-\int_{0}^{\infty} \mathrm{d} t t \partial_{t} G\left(x^{\prime}, t\right) \tag{12}
\end{equation*}
$$

B3. Show that

$$
\begin{equation*}
\left(\partial_{x^{\prime}}-\beta V^{\prime}\left(x^{\prime}\right)\right) \gamma \partial_{x^{\prime}} \tau\left(x^{\prime}\right)=-1 . \tag{13}
\end{equation*}
$$

C: To find a closed form answer, consider the potential

$$
V(x)=\left\{\begin{array}{ll}
U|x| / a & |x| \leq a  \tag{14}\\
U(2 a-|x|) / a & x>a
\end{array} .\right.
$$

Assume the particle starts at $x=0$. Do you reproduce (6), or something "like it", when calculating the time for the particle to escape $S$ ?

15 Problem 4 (Long-range random walk): Consider a random walking particle where

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n} z_{k} \tag{15}
\end{equation*}
$$

where the $z_{k}$ are independent and identically distributed random variables with probability density

$$
\begin{equation*}
\mathrm{p}(z)=\frac{\Gamma\left(\frac{\alpha}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\alpha-1}{2}\right)} \frac{a^{\alpha-1}}{\left(x^{2}+a^{2}\right)^{\alpha / 2}} . \tag{16}
\end{equation*}
$$

Assume that $\alpha>1$, so that (16) is well-defined as a probability distribution.
Let $\tau$ be the time step between random walks, such that $x_{n}=x(n \tau)$. We want to take a continuum limit where $a \rightarrow 0$ and $\tau \rightarrow 0$.

1. Show that a formal Fokker-Planck equation is

$$
\begin{equation*}
\partial_{t} P(x, t)=\int_{-\infty}^{\infty} \mathrm{d} y w(y) P(x-y, t) \tag{17}
\end{equation*}
$$

What should $w(y)$ be?
2. Discuss the interpretation of (17), given (16). In particular, are there values of $\alpha<\infty$ for which the Fokker-Planck equation will (approximately) reduce to the one for strictly local random walks, discussed in Lecture 2? How should $a$ scale with $\tau$ so that the continuum limit of (17) is well-behaved?

[^1]
[^0]:    ${ }^{1}$ Hint: This is probably easiest to do using the Langevin picture!

[^1]:    ${ }^{2}$ Hint: For $|x|<a, G_{0}$ obeys the ordinary Fokker-Planck equation as well. Show that $\partial_{t} G$ is captured wholly by boundary terms, and thus reach the desired conclusion.

