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PHYS 7810: Hydrodynamics Spring 2024

Homework 1

Due: February 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Microscopic model of a random walk): In Lectures 1 and 2 we discussed various cartoons
for a random walk. These theories can be thought of as the effective theory for a more microscopic model,
one of which we will consider in this problem: a “free particle” in one dimension which can exchange
kinetic energy with a thermal bath. Consider a particle of mass m with position x and momentum p,
with MSR Lagrangian (here v and 7 are constants)

L:mi'—i-a]')—ﬂ%—i-a(i’ya—i-np). (1)

A: Give a clear physical interpretation of this theory.

Al. What would be the naive (noise-free) equations of motion? What is the noise?

A2. What is the Ito Fokker-Planck equation for this stochastic theory?
B: Let us now discuss the symmetries of this theory.

B1. Argue that this MSR Lagrangian is time-reversal symmetric with

2
@ :ﬁ%. 2)

What constraint on S must be obeyed?
B2. Identify any strong and weak continuous symmetries of the theory.

C: This problem is simple enough that we can actually compute explicitly the momentum two-point
correlation function (take averages in the stationary state)

Cp(t) = (p(t)p(0))- (3)
Show that for some constant K (which you need to fix):*

Cy(t) = Ke M. (4)

D: Let us now understand the transition to the random walk effective theory.

D1. Calculate the position correlation function
Colt) = ([2(t) = 2(0)%). (5)

D2. In what limit does this answer reproduce the predictions of Lectures 1 and 2?7 Does the conclusion
make physical sense given the microscopic model?

L Hint: This is probably easiest to do using the Langevin picture!
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Problem 2 (Planetary orbit): Consider a planet of mass m interacting with a sun of mass M > m.
For simplicity you can treat the sun as stationary at (z,y,z) = (0,0,0) and restrict to studying just
the motion of the planet directly. The classical Hamiltonian phase space for the dynamics thus has six
coordinates, which you can label as (z;,p;) for i = x,y, 2.

1. If the planet and sun interact via Newtonian gravity, what is the classical Hamiltonian for this system?
You should treat the dynamics as non-relativistic.

2. Write down the MSR Lagrangian for this dissipationless Hamiltonian dynamics.

3. Because the planet has internal dynamics, it is possible for energy not to be conserved; however no net
torques can act on the orbiting planet. Based on this fact, describe the most general possible time-
reversal-symmetric Gaussian noise that can be added to the system. For simplicity, you can continue
to use the MSR formalism.

4. For planetary sized objects, we might assume that if & = SH, then § — oo is a sensible limit (noise
will be negligible). Describe qualitatively what will happen at late times for generic initial conditions.

Problem 3 (Thermal activation energy): A common physical argument is that the time it will take for
a particle to hop over an energetic barrier of height U scales as

T ~ exp|U/T] (6)

at temperature 7T

In this problem we will use our dissipative effective theories for thermal systems to justify this claim.
For simplicity, we focus on an (overdamped) one-dimensional degree of freedom x with potential energy
V(x); we saw in Lecture 3 that the Fokker-Planck equation for such a system was:

0P =0, [y(z) (0, + BV'(2)) P|, (7)
for some generic y(z). Here, you may take - to be a constant for simplicity.
A: Since (7) is linear, we can find its general solution by finding a Green’s function for initial condition
P(z,0) =8(x — a’). The resulting Green’s function is denoted with
Pz, tla',0) = (ze”V!|2'), (8)
using the notation from Lecture 3.

By performing some quick manipulations on (8), show that P(x,t|z’,0) obeys both (7) and the back-
ward Fokker-Planck equation

0P = (8y — BV'(2')) (10w P). (9)

B: The backward Fokker-Planck equation is useful because it is well-suited to answer the following ques-
tion: how long does it take for a particle to leave interval S = [—a,a|? The reason this problem is
subtle is that at time 7, we should only keep track of the trajectories which obey z(t) € S for all
0 <t < 7. A clever mathematical way to do this is to find the special solution Gy to (9) subject to
the boundary conditions

Go(*a,t > 0]|z’,0) =0, (10a)
Go(x € S,0|2',0) =8 (z — 2'). (10b)

We can intuitively think of this as removing a particle whenever it hits x = +a, thus keeping only the
particles that stay trapped inside .S in the remainder of the dynamics.
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B1. The solution G will not be a well-defined probability distribution on  (which should make sense
given the intuitive argument above). Nevertheless, explain why

a

G2 t) = /d:c Go(xz,t|2’,0) (11)

—a

can be interpreted as the probability that a particle starting at ’ has not escaped after time ¢.?
B2. Explain why the average time 7 it takes for a particle that starts at ' to hit the boundary is:

o0

(@) = — [ dt to,G(2', t). (12)
/
B3. Show that
(0 — BV (")) vOp7(2") = —1. (13)

C: To find a closed form answer, consider the potential

Ulz|/a 7] <a

Viz) = { U(2a—|z])/a z>a (14)

Assume the particle starts at = 0. Do you reproduce (6), or something “like it”, when calculating
the time for the particle to escape S7

Problem 4 (Long-range random walk): Consider a random walking particle where

n
Ty = sz, (15)
k=1

where the z; are independent and identically distributed random variables with probability density

rg) !
VAT (250) (2 + a2)al?

p(z) = (16)

Assume that o > 1, so that (16) is well-defined as a probability distribution.
Let 7 be the time step between random walks, such that =, = z(n7). We want to take a continuum
limit where a — 0 and 7 — 0.
1. Show that a formal Fokker-Planck equation is
o
oP(r.t) = [ dy ()Pl 1) a7)

—o0
What should w(y) be?

2. Discuss the interpretation of (17), given (16). In particular, are there values of @ < oo for which
the Fokker-Planck equation will (approximately) reduce to the one for strictly local random walks,
discussed in Lecture 2?7 How should a scale with 7 so that the continuum limit of (17) is well-behaved?

2 Hint: For |z| < a, Go obeys the ordinary Fokker-Planck equation as well. Show that 9;G is captured wholly by boundary
terms, and thus reach the desired conclusion.



