
PHYS 7810: Hydrodynamics Spring 2024

Homework 2

Due: February 20 at 11:59 PM. Submit on Canvas.

Problem 1 (Cell size):15 Model a single-celled bacterial organism as a sphere of radius R (it lives in our
three spatial dimensional universe). The bacterium requires oxygen to power the molecular machinery
(power proteins, and so on). Assume that the bacterium must consume oxygen at a constant rate γ per
unit volume. If the diffusion constant for oxygen dissolved in water is D and is the same inside and
outside the cell, we can then model the concentration of dissolved oxygen around the cell via the modified
diffusion equation:

∂tc = D∇2c−
{
γ R > r
0 R < r

, (1)

1. Assume that the concentration of dissolved oxygen far away from the cell is c0. Find a rotationally-
invariant, time-independent solution to (1) in spherical coordinates, with c(r →∞) = c0 and regularity
at r = 0.

2. Argue that if the cell is too large (R is too large), then a physical solution to the diffusion equation
does not exist. Deduce the maximal size of a cell Rmax.

3. Most single-celled organisms in nature (without very oblong shapes) have R ∼ 10−6 m, and e.g. E. coli
bacteria consume oxygen at rate γ ∼ 20 mM/s. For dissolved oxygen in water at room temperature,
we measure c0 ∼ 0.2 mM and D ∼ 2 × 10−9 m2/s. Based on these numbers, do you think that the
size of these single-celled organisms might be limited by their need to consume oxygen based solely on
molecular diffusion?

Problem 2: Consider a theory in one spatial dimension with n conserved charges ρa (a = 1, . . . , n), which
should be invariant under the following generalized time-reversal transformation:

ρa(x, t)→ Cabρb(x,−t). (2)

Suppose that the stationary state is characterized by

Φ =

∫
dx

1

2
ρa(x)Kabρb(x). (3)

Here Kab is a symmetric, positive semi-definite matrix.

A:15 Build the most general possible hydrodynamic effective field theory.

A1. What are the requirements on Cab for this to be a valid generalized time-reversal transformation?

A2. If πa are the conjugate fields to ρa in the MSR Lagrangian, write down the generalized time-
reversal transformation on πa.
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A3. Deduce that, keeping track only of quadratic order terms in πa and ρa, the most general effective
field theory is

L = πa∂tρ
a + iMab∂xπ

a∂x

(
πb − iµb

)
. (4)

List all possible constraints that you can think of on Mab.

B:15 Consider the case n = 2, and take the matrix Cab = (σz)ab, with Kab = K0δ
ab.

B1. What is the most general possible form of Mab?

B2. Find the dispersion relations for the hydrodynamic modes, and compare to the theory of ordinary
diffusion. For convenience, you may assume that M11 = M22 to simplify some algebra.

C:10 There are two senses in which our hydrodynamic effective field theory must be stable.

C1. Firstly, Mab must be a positive-semidefinite matrix. Why?

C2. Secondly, the quasinormal modes must have Im(ω(k)) ≤ 0. Why?

C3. Given generic positive-semidefinite matrices M and K, will the criterion of C2 always be satisfied?
Why or why not?

Problem 3 (Fluctuating electrodynamics): Consider the theory of electrodynamics in some ambient
“thermal” medium (e.g. a material at room temperature). We anticipate that due to the interactions
between the material and electrodynamics, we will need to modify Maxwell’s equations to account for the
additional dissipation within any effective field theory.

A:15 To begin, we need to reformulate Maxwell’s electrodynamics as an MSR Lagrangian. It will prove
useful to begin with the Lagrangian for electromagnetism, gauge fixed so that At = 0:

L =
ε

2
∂tAi∂tAi −

1

4µ
(∂iAj − ∂jAi) (∂iAj − ∂jAi) .

A1. We can define a Hamiltonian theory by introducing the conjugate momentum Di to the field Ai,
which is equal to ∂L/∂(∂tAi). What is the physical interpretation of this conjugate momentum
field?

A2. Find the Hamiltonian density
H = Di∂tAi − L(Di, Ai). (5)

A3. Suppose that the stationary state is thermal, such that

Φ = βH = β

∫
d3x H. (6)

Write down the dissipationless MSR Lagrangian.

A4. Explain how time-reversal symmetry should act in this system, and confirm that the MSR La-
grangian is time-reversal-symmetric.

B:20 Now we can consider incorporating dissipation into our theory. There are no explicit conservation
laws we need to worry about.

B1. Write down the most important (i.e. fewest derivatives) dissipative terms within effective field
theory; continue to respect time-reversal symmetry.
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B2. Neglecting noise in the equations of motion, deduce the quasinormal mode spectrum for electro-
magnetism in a thermal medium. For this calculation, do not take the long wavelength limit.

B3. The effective field theory you have just described is an excellent model for electrodynamics in a
particular kind of ambient medium. Explain what medium this is and why.

C:10 Show that you may directly integrate out fields1 in the MSR Lagrangian from B to obtain the following
effective field theory, which contains only the slow degrees of freedom:

L = πi∂tAi + iκπi (πi − ∂j (∂jAi − ∂iAj)) . (7)

Here κ > 0 is a constant. Confirm that in the long-wavelength limit this theory is consistent with
your answer to B2.

Problem 4 (Modulated symmetry): Suppose15 that instead of having a conserved charge density integrated
over space, we consider instead the following modified conservation law (for constant k0 6= 0):

d

dt

∫
dx ρ(x) cos(k0x) = 0. (8)

1. Deduce the hydrodynamic effective field theory for such a system, assuming Φ takes the same form as
in Lecture 5. Demand that the hydrodynamic theory has emergent translation invariance.

2. Describe the quasinormal modes, and compare them to the conventional theory of diffusion.

1This means you can solve the Euler-Lagrange equations for certain fields (that show up at most quadratically), and plug
those equations of motion back into the Lagrangian, to get a Lagrangian that depends on fewer fields.
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