
PHYS 7810: Hydrodynamics Spring 2024

Homework 3

Due: March 5 at 11:59 PM. Submit on Canvas.

Problem 1 (Plasmons): In fluids with dynamical electromagnetism (which typically arise either in plas-
mas in space, or also in a fluid made out of mobile electrons in a metal), the nature of sound waves is
qualitatively altered by Maxwell’s equations. Let ρ(x, t) denote the density of (charged) electrons. In
thermodynamic equilibrium, ρ(x, t) = ρ̄, and there is some compensating non-dynamical charge density
−ρ̄ such that the overall system is charge-neutral.

A:10 Let us begin by thinking about the thermodynamic ensemble, which we might approximate as

Φ[ρ,E] = Φ0[ρ] + β

∫
d3x

ε

2
E2. (1)

If the charged particles in the fluid move at non-relativistically slow speeds, we can neglect the con-
tributions from magnetic fields. Use Maxwell’s equations to argue that E and ρ are not independent;
hence in Fourier space, on long wavelengths (k → 0):

Φ ≈ βe2

2ε

∫
d3k
|ρ(k)|2

k2
+ Φ0. (2)

B:20 Using the modified Φ appropriate for this charged fluid (where ρ 6= 0 in thermodynamic equilibrium),1

we will now calculate the quasinormal modes. For simplicity, you should only keep track of the leading
order behavior in the real/imaginary parts of ω(k) in the long wavelength limit k → 0.

B1. Show that the viscous diffusive mode is unaffected by the modified Φ.

B2. Show that the sound mode is qualitatively altered, and describe its new dispersion relation. Do
not assume that the system has Galilean symmetry. This mode is called a plasmon.

B3. Describe what happens to the incoherent diffusion mode.

C:5 Is this fluid more or less likely to behave as an incompressible fluid than a conventional charge-neutral
fluid (like liquid water)? Give a short qualitative answer.

Problem 2 (Width of a shock wave): Consider a Galilean-invariant fluid (Lecture 9) in one spatial
dimension (d = 1) with pressure (in a frame where the fluid is at rest) is given by

P (µth, T ) =
1

2
χµ2th +

1

2
cT 2. (3)

A:10 Let us first sort out the thermodynamic properties of this fluid, following Lecture 8. Calculate the
mass density, energy density, and entropy density of the fluid as a function of µth and T .

1Hint: The dissipative MSR Lagrangian from Lecture 8 is a useful starting point for this problem.
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B:15 Consider a Riemann problem where the initial mass density ρL = 2ρR, and the initial velocity vR = 0
while vL > 0. Our goal is to look for energy densities εL,R such that the solution to the Riemann
problem consists of a single shock wave.

B1. Following Lecture 11, move to a reference frame in which the shock is stationary. Obtain a set of
jump conditions relating the fluid parameters on the left and right of the shock wave.

B2. Now use the parameters above. Show that a single shock wave exists only when

εL = 5εR. (4)

C:15 To confirm that this is a physical solution to the Riemann equation, we need to check that entropy is
produced across the shock wave.

C1. Following Lecture 8, confirm using thermodynamic identities that in ideal hydrodynamics,

∂ts+ ∂x (sv) = 0. (5)

C2. The equation above need not hold directly at the location of the shock wave. Show that the
equation above only makes sense in the presence of a shock wave if (5) is modified to

∂ts+ ∂x (sv) = α · δ(x− vsht). (6)

Assuming that χρ2L = cT 2
L , evaluate α for the Riemann problem above. Show that α > 0.

D:10 The presence of bulk viscosity in the Navier-Stokes equations changes on “short enough” length scales
the physics of the shock wave. Assume that this is the only non-zero dissipative coefficient.

D1. In Lecture 8, we argued that dissipation leads to entropy production in the Navier-Stokes equa-
tions. Without re-doing the derivation from scratch, argue that the entropy production rate in
the presence of bulk viscosity will be

∂ts+ ∂x (· · · ) =
ζ

T
(∂xv)2. (7)

D2. By equating the two formulas you have obtained for entropy production, estimate the width ` of
the shock wave within viscous hydrodynamics, neglecting the precise O(1) prefactor. You do not
need to explicitly solve the Navier-Stokes equations; a simple argument is enough.

Problem 3 (Vortex knots): In this problem, we will study the dynamics of vortices in an ideal and
incompressible fluid, following Lecture 12. Recall that we derived the equation:

∂tr(s) =
Γ

4π

∫
ds′

∂sr(s′)× (r(s)− r(s′))

|r(s)− r(s′)|3
. (8)

A:15 In general, (8) is a very complicated integral equation to solve. However, under certain approximations,
we might find reasonable approximate solutions.

A1. Suppose that we set

r(s′) ≈ r(s) + (∂sr(s))(s′ − s) +
1

2

(
∂2sr(s)

)
(s′ − s)2 + · · · . (9)

Show that we may then approximate

∂tr = C∂sr× ∂2sr, (10)

where the constant C arises out of a log-divergent integral; in what follows, take it to be constant.
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A2. Let us parameterize the point r in cylindrical coordinates (r, φ, z). Show that

C−1∂tr = r∂sφ∂
2
sz − 2∂sr∂sφ∂sz − r∂2sφ∂sz, (11a)

C−1∂tφ =
∂2sr∂sz − ∂sr∂2sz

r
− (∂sφ)2∂sz, (11b)

C−1∂tz = 2(∂sr)
2∂sφ+ r∂sr∂

2
sφ+ r2(∂sφ)3 − r∂2sr∂sφ. (11c)

A3. Verify that the following vortex ring is a solution:

r = R, (12a)

φ =
s

R
, (12b)

z =
Ct

R
. (12c)

B:15 Let r0 denote the solution found in (12).

B1. Consider now the linear stability of this solution, by setting

r(s, t) = r0(s, t) + r1(s, t). (13)

Solve (11) for (r1, φ1, z1) ∼ ei(ks−ωt), treating r1 as an infinitesimal perturbation and thus only
keeping first order corrections in r1 after plugging in to (11) . Deduce that

ω = ±Ck
√
k2 − 1

R2
. (14)

B2. Explain why there must be integers p and q for which

k =
q

pR
. (15)

B3. What do you find happens when p = 1? As part of your answer, draw physically what the vortex
configurations will look like.

B4. Argue that when p > 1, the resulting vortex configuration is a vortex knot that appears to wrap
a torus (donut). Discuss, and explain intuitively, the stability criteria for these vortex knots.
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