
PHYS 7810: Hydrodynamics Spring 2024

Homework 4

Due: March 19 at 11:59 PM. Submit on Canvas.

Problem 1 (Unstable flow between rotating cylinders): Consider a fluid flowing between two cylinders
of radius R1 < R2, with the smaller cylinder centered in the larger one. In polar coordinates, the fluid
exists for R1 < r < R2. Assuming, as we will for this problem, that the flow has rotational symmetry
(∂θ = 0), the incompressible Navier-Stokes equations read:
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In this problem, we will consider the flow subject to no-slip boundary conditions, in the presence of
two rotating cylinders. Assume that the inner cylinder rotates with angular frequency Ω1, and the outer
cylinder with Ω2. The no-slip boundary condition thus enforces vθ(r = R1,2) = R1,2Ω1,2.

A:15 Show that a simple solution to the Navier-Stokes equations, obeying the correct boundary conditions,
has vr = vz = 0 while
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B:25 Now consider the stability of this flow pattern.

B1. Let v = v0 + v1 and P = P0 + P1. Expand the Navier-Stokes equations to first order in the
perturbations.

B2. Now, let us try to reduce these equations to a single ordinary differential equation for, e.g.,

vθ1 = g(r)eikz−iωt. (3)

Show that in the limit W = R2 −R1 � R1 and |Ω1 −Ω2| � |Ω1|, you may approximate that
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B3. Show that if you use the rather unusual boundary conditions that vr1 = vθ1 = 0 but τrz = 0 at
r = R1,2, then all six boundary conditions are solved by the simple ansatz

g(r) = sin
nπ(r −R1)

W
, (n = 1, 2, 3, . . .). (5)
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B4. Show that the system is unstable so long as
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Although the boundary conditions we have chosen are unrealistic, choosing more realistic boundary con-
ditions doesn’t lead to a qualitatively different answer, while significantly complicating the calculation.
Historically, an accurate determination of the onset of instability in such a flow was important in experi-
mentally deducing that no-slip boundary conditions were the physically correct boundary conditions.

Problem 2 (Blood flow): In this problem we will study the problem of blood flow through the circulatory
system. Consider a blood vessel as a cylinder of radius R, oriented in the z-direction. Suppose that there
is a pressure1

P = −αz cos(ωt) = −αz × Re
[
e−iωt

]
(7)

which drives the flow of blood, which has kinematic viscosity ν and mass density ρ. Treat blood as
incompressible.

A:20 Let us first find the flow pattern as a function of time.

A1. Show that a consistent solution can be found with only vz 6= 0.

A2. Show that the velocity is given by
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Here J0 is the Bessel function of order 0.

A3. Sketch the flow profile when ω is small, and when it is large. What does ω need to be small/large
compared to?

B:15 How much power must the human heart supply to push blood through the human body?

B1. Show that the time-averaged power needed to drive the flow through a pipe of length L is
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B2. In the limit ω → 0, evaluate this expression analytically, and compare to the results from Lec-
ture 12, where an analogy was made between resistor networks and pipe networks. Does your
expression for power make sense in this context?

B3. The largest blood vessel in the body has radius R ∼ 2 cm and L ∼ 0.5 m; the pressure gradient
across it might be α ∼ 3 × 103 Pa/m, while the frequency ω ∼ 0.2 s−1. Given that blood has
ρ ∼ 103 kg/m3 and ν ∼ 10−5 m2/s, estimate the power needed to drive the flow pattern above.
You may want to evaluate the integral above numerically in Mathematica. Compare your answer
to the experimentally-deduced value of ∼ 1 W.

1In this problem, it will help to use complex-valued variables, although the physical response must of course be real-valued.
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Problem 3 (Jets): A jet corresponds to a fluid flow formed by the injection of a constant momentum per
unit time F (i.e. a force) applied at the point (x, y) = (0, 0). We will study the evolution of such a jet as
it expands in a two-dimensional flow.

In this problem, you should assume that the fluid is incompressible, with density ρ. Define the
parameter

J =
F

ρ
, (10)

and assume the fluid has dynamical viscosity ν.

A:25 We first begin by solving the problem of a laminar jet. We will invoke the boundary layer theory of
Lecture 14 as an approximation for the evolution of the jet.

A1. Following Lecture 14, non-dimensionalize the stream function ψ and coordinates x and y, given
the two dimensional parameters J and ν in the problem.

A2. By demanding that
∞∫
−∞

dy v2x = J, (11)

deduce that a similarity solution for the stream function will take the dimensionless form
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A3. What ordinary differential equation must f obey?

A4. Show that a solution satisfying your result, along with (11) and sensible boundary conditions, is

f(ξ) =
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Note that the constant c is dimensionless (and you should deduce what its value needs to be),
but might depend on the precise non-dimensionalization you found earlier.

A5. Show that the jet entrains nearby fluid into it, by calculating the particle flow rate

Q(x) =

∞∫
−∞

dy vx. (14)

Determine how rapidly Q(x) increases at large x.

A6. Argue that our model of a jet is only accurate for x & xc. What is the value of xc and why?

B:15 Now let us consider the theory of a turbulent jet. As in Lecture 16, you may use a theory of weak
turbulence to estimate the flow, by incorporating a turbulent viscosity into the theory.

B1. First, attempt to generalize the similarity solution for the jet’s flow pattern. By dimensional
analysis, write down the most general possible stream function ψ.

B2. Use boundary layer theory, with the appropriate turbulent viscosity2 and your ansatz from B1,
to predict the shape of the turbulent wake.

B3. Does the turbulent wake entrain more or less of the ambient fluid than the laminar wake?

2Hint: Take νt to depend on x but not ψ for simplicity.
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