
PHYS 7810: Hydrodynamics Spring 2024

Homework 5

Due: April 16 at 11:59 PM. Submit on Canvas.

Problem 1 (Rectangular fluid): Consider a two-dimensional anisotropic and incompressible fluid. We
presume that the equations of motion take the form (here ρ is constant):

∂ivi = 0, (1a)

ρvj∂jvi + ∂iP = ηjikl∂j∂kvl. (1b)

Suppose that the only spacetime symmetries are separate mirror symmetries under x→ −x and y → −y.
Do not assume that the fluid has microscopic time-reversal symmetry.

A:15 Let us first analyze the allowed form of ηjikl.

A1. Suppose that the bulk viscosity δijδklηjikl = 0. Show that there remain 5 independent coefficients
allowed in ηijkl, allowed by the spatial symmetries.

A2. What are the constraints on these coefficients that arise from our dissipative hydrodynamic effec-
tive field theory, if any?

B:25 Suppose that we want to experimentally measure all of the independent viscosity coefficients in this
system. Suppose for simplicity that the only experiments you can perform are to etch long rectangular
channels (of width w) in the fluid. The channel need not be aligned with the x/y-symmetry axes of
the fluid. Down the channel, you may apply a uniform pressure gradient of known magnitude; you
may then measure the pressure gradient across the width of the channel, and you can also measure
the flow rate of the fluid down the channel.

B1. Let θ denote the angle made by the channel relative to the fluid, and consider the new coordinates:(
X
Y

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
. (2)

Argue that the channel flow solution will have only vX 6= 0, and that vX(Y ) is only a function of
a single coordinate.

B2. Assuming no-slip boundary conditions, calculate the flow vX(Y ) for a given pressure gradient
∂XP , and deduce the total flow rate

Q =

w∫
0

dY ρvX(Y ). (3)

B3. Calculate the pressure difference between the two boundaries of the channel.

B4. By rotating the channel (varying θ), is it possible to deduce all of the independent viscosities of
the rectangular fluid? Why or why not?
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B5. If time-reversal symmetry is restored, is it generically possible to see a “Hall” pressure gradient
across the width of the channel?

C:5 In a system with rectangular symmetry, and momentum and particle number conservation, do you
expect that the hydrodynamic equations would take the form of (1)? Why or why not?

Problem 2 (Bubble oscillations): Consider a spherical bubble of radius R, containing fluid of density ρ
and pressure P . The outer surface of the bubble has surface tension with coefficient α, separating it from
a vacuum. There are no external forces acting on the bubble. As in Lecture 17, we can model the energy
stored in surface tension as

U = α

∫
dθdφ

√
(R+ ζ)4 sin2 θ + (R+ ζ)2 sin2 θ(∂θζ)2 + (R+ ζ)2(∂φζ)2. (4)

A:15 Suppose that the radius of the bubble is deformed to r = R+ ζ for ζ � R.

A1. As in Lecture 17, we expect that the radial pressure drop across the bubble obeys

P (r > R)− P (r < R) = − 1

(R+ ζ)2 sin θ

δU

δζ
. (5)

Deduce that even in equilibrium (ζ = 0) there must be a relative pressure drop between the fluid
outside vs. inside the bubble. Is the pressure larger inside or outside?

A2. Suppose that the inside of the bubble is filled with an incompressible fluid that undergoes irrota-
tional flow. If the velocity potential is Φ, deduce that one boundary condition on Φ is

∂Φ(r = R)

∂t
= − 2α

ρR2
ζ − α

ρR2

[
1

sin θ

∂

∂θ

(
sin θ

∂ζ

∂θ

)
+

1

sin2 θ

∂2ζ

∂φ2

]
. (6)

A3. What is the other boundary condition linking Φ and ζ?

B:15 Now solve for the normal modes of the bubble.

B1. What equation does Φ obey for r < R? Deduce the most general possible solution for Φ.

B2. Use the boundary conditions from A2 and A3 to deduce the frequencies of the normal modes.

B3. Sketch the shape of the bubble in the lowest frequency normal mode with ω 6= 0. Give a physical
and intuitive explanation for why this is the slowest normal mode of the bubble.

Problem 3 (Atmospheric waves): In this problem we will consider the propagation of very long wave-
length gravity waves in the atmosphere. As discussed in Lecture 18, atmospheric fluid dynamics is best
considered in a non-inertial reference frame rotating with the Earth, and so the Navier-Stokes equations
need to be modified to account for Coriolis and centrifugal forces. As in Lecture 17, you should neglect
viscous corrections in the analysis of gravity waves; further neglect surface tension for this problem.

A:25 Let us begin by studying the following crude model of an atmosphere, as a fluid of height h in equi-
librium. The effective acceleration due to gravity will be g (this includes corrections from centrifugal
forces, as discussed in Lecture 18), while the Coriolis force is proportional to the parameter f . Unlike
in Lecture 17, due to the Coriolis force, we can no longer look for irrotational gravity waves. As in
Lecture 17, the incompressible fluid exists for 0 ≤ z ≤ h+ ζ(x, y), with |ζ| � h.

A1. Write down the equations of motion for pressure and the 3 components of velocity. Keep only first
order perturbations away from an equilibrium configuration where the fluid is at rest. Explain
what the most general solution of these equations is, up to boundary conditions.
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A2. Impose appropriate boundary conditions at z = 0 and z = h+ ζ.

A3. Look for plane wave solutions proportional to, e.g., vx ∼ vx(z)eikx−iωt. Find the dispersion relation
ω(k) for all possible modes.

A4. Show that if k → 0, you find three possible solutions: one with ω = 0 and the other with

ω = ±
√
f2 + ghk2. (7)

Explain the physical origin of all three of these normal modes.

B:20 Now let us discuss the propagation of these atmospheric waves near the equator.

B1. Show that in the long wavelength limit, there is a systematic way to “integrate out” the z direction
and obtain coupled equations for ζ and vx,y as functions of x, y, t:

0 = ∂tζ + h (∂xvx + ∂yvy) , (8a)

0 = ∂tvx + g∂xζ − fvy, (8b)

0 = ∂tvy + g∂yζ + fvx. (8c)

B2. Recall from Lecture 18 that if θL denotes the latitude of the Earth, that f ∼ sin θL. Hence crossing
the equator (θL = 0), the sign of f flips. As a cartoon model of this effect, take the model (8)
along with

f(y) = sign(y) · f0 (9)

where f0 > 0 is a constant. Find the normal modes of this model, and discuss what you find.
Think carefully about what happens near the interface at y = 0, and about what the physically
correct boundary conditions must be.
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