
PHYS 7810: Hydrodynamics Spring 2024

Homework 6

Due: April 23 at 11:59 PM. Submit on Canvas.

Problem 1 (Viscosity of air): In Lecture 23 we used the relaxation time approximation to argue that the
viscosity of a weakly-interacting classical gas was η = Pτ . To compare with actual experimental data for
a d = 3 dimensional gas, we need to actually calculate τ . This requires unpacking a bit more the rate R
in the collision integral. To proceed, we quote some results from classical scattering theory:

R
(
p1p2 → p′1p

′
2

)
=

∫
d2x⊥ ·

|p1 − p2|
m

× δ(p′1 − p′1(p1,p2,x⊥))δ(p′2 − p′2(p1,p2,x⊥)) (1)

where x⊥ corresponds to the “impact parameter” (i.e. the relative spatial offset of the incident particles
far from the collision), and p′1(p,p2,x⊥) is the final momentum of particle 1 given the initial momenta

and impact parameter. The overall prefactor |p1−p2|
m d2x⊥ counts the rate at which the particles actually

approach each other, per particle per unit volume.

A:15 Let us approximate that the gas is made up of perfect spheres of radius a. It is helpful to separate
out the center of mass momentum by defining

p1 = p + q, (2a)

p2 = p− q. (2b)

Note that if q = muẑ, then in the center of mass frame as t→ −∞,

x1(t) = (x⊥, y⊥, ut) , (3a)

x2(t) = (0, 0,−ut) . (3b)

If p1 +p′1 is parallel to the tangent plane between the surface of the spheres at the moment of collision
(i.e. they reflect off each other), deduce p′1 and p′2.

B:25 With a specific model for collisions, let us now predict viscosity.

B1. Following the variational method discussed in Lecture 24, estimate the shear viscosity given the
collision integral of A by using the trial |ψ〉 = |pxpy〉. Show that in this approximation,1

η ≈ 5
√
mT

64
√
πa2

. (4)

B2. Predict the viscosity of air at room temperature (T ≈ 300 K or T ≈ 4 × 10−21 J). Assume that
air is made up of density n ≈ 1027 m−3 of N2 molecules, each of which has molecular mass
m ≈ 5 × 10−26 kg, and size a ≈ 3 × 10−10 m. Compare to the experimental value, which was
given (as kinematic viscosity) in class.

1Hint: The best way to proceed is to evaluate the linearized collision integral carefully in the coordinate system (2). Use
rotational symmetry to show that 10〈pxpy|W|pxpy〉 = 〈pipj − 1

3
p2δij |W|pipj − 1

3
p2δij〉.
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Problem 2 (Anisotropic gas): Consider the kinetic theory of an anisotropic gas in which the kinetic
energy (i.e. “dispersion relation”) of the single-particle excitations takes the form

ε(px, py) =
a

4

(
p4x + p4y

)
. (5)

Assume that the (microscopic) dynamics is time-reversal-symmetric, and that in equilibrium the distri-
bution function takes the form

feq(p) = e−β(ε(p)−µ). (6)

Ignore energy conservation (you can imagine that our gas can exchange energy, but not momentum, with
some other immobile degrees of freedom), but assume particle number and momentum are still conserved.
This reduces the number of calculations you need to do.

A:20 Following Lecture 22, let us deduce the ideal hydrodynamics of this system. Assuming that

f(x,p) = e−β(ε(p)−µth(x)−v(x)·p), (7)

calculate the number density n, number current Ji, momentum density gi and stress tensor τji in terms
of the hydrodynamic variables µth and vi (as well as the constant β). There is not a nice closed form
expression for these functions to all orders in vi; provide formulas valid up to O(v4). Use Mathematica
to evaluate integrals; you may want to define Cn = 2(n−1)/2(aβ)−(n+1)/4Γ(n+1

4 ).

B:25 Now follow Lectures 23 and 24 to calculate dissipative corrections within linear response. Use the
relaxation time approximation: on any “fast mode” in kinetic theory,

Wf |Φf〉 =
1

τ
|Φf〉. (8)

Explicitly calculate the hydrodynamic constitutive relations to first order in derivatives – i.e. calculate
the viscosity tensor and any other coefficients that may arise in the kinetic theory.

C:15 Let us now compare to effective field theory predictions, following Lecture 19.

C1. Are the thermodynamic constitutive relations from A the most general possible allowed by a
time-reversal symmetric MSR Lagrangian?

C2. Within linear response around vi = 0, what are all of the dissipative coefficients you would predict
from the MSR Lagrangian? Are all of them non-zero in your calculation from B?

Problem 3 (No subdiffusion in kinetic theory):15 Consider a generic kinetic theory in which the linearized
Boltzmann equation takes the form (following Lecture 23):

iω|Φ〉 = ikiVi|Φ〉+ W|Φ〉. (9)

1. Give a physical reason why W must be positive semidefinite, regardless of any underlying symmetries
in the problem.

2. Suppose that the combination of inversion and time-reversal (IT) is a symmetry. Fixing a specific
orientation for the wave number ki = k · ni (with unit vector ni), let

ω(k) = ω0 + ω1k + ω2k
2 + ω3k

3 + · · · (10)

be an eigenvalue of (9). Show that at least one of ω0, ω1, or ω2 must be non-zero.

3. Does the conclusion hold if IT-symmetry is broken? If yes, show why; if no, find a counterexample.

This problem puts strong constraints on finding subdiffusive hydrodynamic universality classes (in which
ω ∼ kn for n > 2) within the regime of validity of kinetic theory.
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