PHYS 7810 Hydrodynamics Spring 2024

Lecture 1

Random walks

January 16

Office hours: 3-4 PM Fridays C Duane F629

Home	PHYS 7810, Spring 2020	4	
Assignments Grades People Pages		PHYS 7810 Hydrodynamics	everything here
Zoom		Spring 2024	here
lectures are recording	General Course Document • Syllabus (course specific) ↓ • Syllabus (university required statements • Holistic grading policy ↓ • Course Slack (invitation link) ► Lectures: notes / (January 16) Lecture 1 January 16 January 18 Homework:		15
	Homework 1 ↓ Homework 2	due February 6 due February 20	Solutions Solutions

No books (refs (now).

points

a lala

Problem 1 (Microscopic model of a random walk): In Lectures 1 and 2 we discussed various cartoons for a random walk. These theories can be thought of as the effective theory for a more microscopic model, one of which we will consider in this problem: a "free particle" in one dimension which can exchange kinetic energy with a thermal bath. Consider a particle of mass m with position x and momentum p, with MSR Lagrangian (here γ and η are constants)

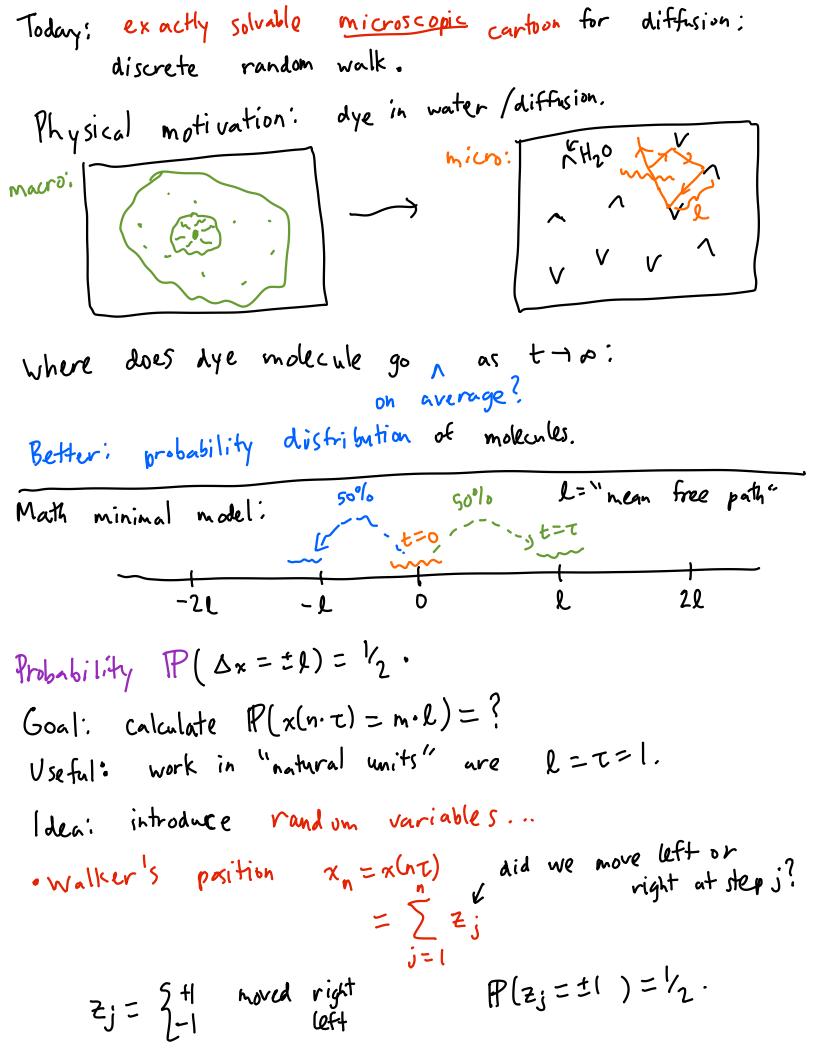
$$L = \pi \dot{x} + \sigma \dot{p} - \pi \frac{p}{m} + \sigma \left(i\gamma \sigma + \eta p \right).$$
⁽¹⁾

10 A: Give a clear physical interpretation of this theory.

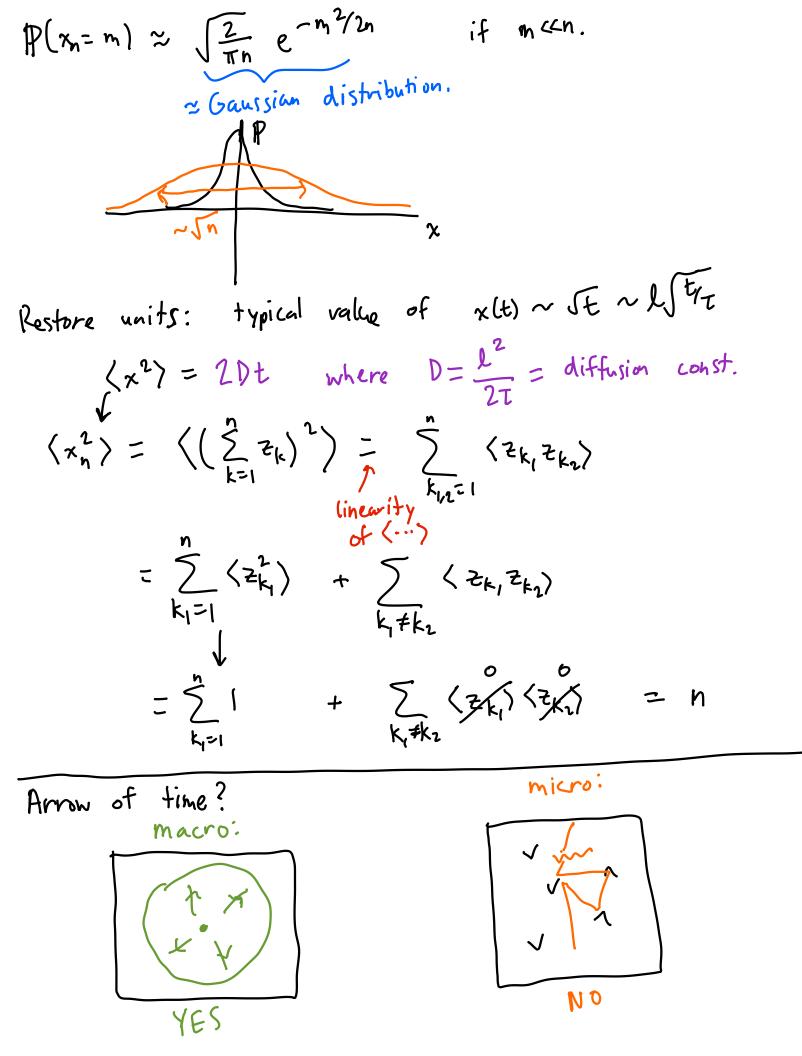
A1. What would be the naive (noise-free) equations of motion? What is the noise?

A2. What is the Itō Fokker-Planck equation for this stochastic theory?

channel
0, 2, 4, 6, 8, 16
(holistic grading)
Extensions: 2 HW extensions (
$$\leq 48$$
 hrs)
or drops. (auto-applied)
Hydrodynamics = dissipative effective field theory of
thermalization in many-body system.
thermalization = dynamics that leads system to appear
 $\left| ocally \right|^{1}$ in a thermal state:
 $\left\langle x_i \right\rangle = \frac{\int dV e^{-\beta E} x_i}{\int dV e^{-\beta E}} \left[\left\langle x_i \right\rangle = \frac{h(e^{-\beta H} x_i)}{h(e^{-\beta H})} \right]$
dissipative = thermalization is "irreversible" ($2^{nd} law$)
effective field theory = systematic, most general model
consistent W/ symmetries, slaw DOF



Calculate P[xn=m] using generating function method: Define $G(y) = \sum_{m} y^{m} \mathbb{P}[x_{h} = m]$ Calculate $G_n(y)$ as expectation value $\mathbb{E}[\cdots], \langle \cdots \rangle$: $\langle X \rangle = \sum_{n} a P(X = a)$ And: $G_{n}(y) = \langle y^{x_{n}} \rangle = \langle y^{\frac{n}{2}} \rangle = \langle \prod_{j=1}^{n} y^{\frac{2j}{2}} \rangle$ (Implicit/physical) assumption: Zj's are independent: $P(z_j = a \ k \ z_{j'} = b) = P(z_j = a) P(z_{j'} = b)$. And: $\langle y^{z_1} y^{z_2} \rangle = \sum_{a_{1},a_{2}=\pm 1} y^{a_1} y^{a_2} P(z_{1,2} = a_{1,2})$ $= \left(\sum_{a_{i}=\pm 1}^{\infty} y^{a_{i}} \mathbb{P}(z_{i}=a_{i})\right) \left(\sum_{a_{2}=\pm 1}^{\infty} y^{a_{2}} \mathbb{P}(z_{2}=a_{2})\right)$ So: $G_n(y) = \langle y^{z_1} \rangle^n = \left(\frac{1}{2y} + \frac{y}{2}\right)^n = \frac{1}{(2y)^n} (1+y^2)^n$ $= \sum_{k=0}^{n} \frac{1}{(2\gamma)^{n}} {\binom{n}{k}} \gamma^{2k} \qquad \gamma^{2k-n} = \gamma^{m}$ or $k = \frac{n+n}{2}$ Read off: $P(x_n = m) = \frac{1}{2^n} \begin{pmatrix} n \\ n+m \\ 2 \end{pmatrix} = \frac{1}{2^n} \frac{n!}{\binom{n+m}{2}!}$ Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Large n?



"forward" $P(x_{h} - x_{o} = m)$	٧٢.	"backnard" $P(x_o - x_h = m)$	
$2^{-1}\left(\frac{n+n}{2}\right)$		$2^{-n} \begin{pmatrix} n \\ n-m \\ 2 \end{pmatrix}$	J

arrow of time comes from knowledge of xo.