PHYS 7810 Hydrodynamics Spring 2024

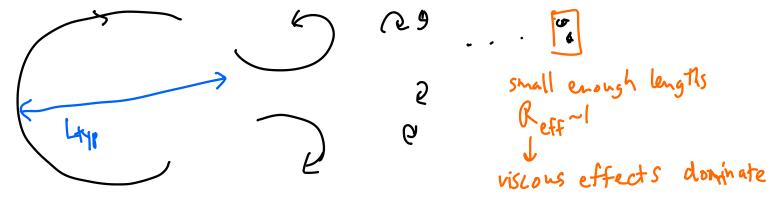
Lecture 16 Phenomenology of turbulent flow

March 7

Recall: high Reynolds number flow R>>1:

R = typ Lyp, saw an instability from Smooth/lamiar flow to

turbulent flow = chaotic, multi-scale flow



vortex/eddy splits into smaller k smaller eddies. -direct cascade = inject energy @ large length scales,
energy flows to small length scales.

We don't have rigorous theory for effective description (non-chaotic) of turbulence. \Longrightarrow cartoons!

Illustrative example; wake behind cylinder → O ° D° o R~104 $R \sim 1$ not turbulent, turbulent. laminar nonlinear Laminar regime: can use boundary layer theory (lec 14); $V_{x} \partial_{x} V_{x} + V_{y} \partial_{y} V_{x} = v \partial_{y}^{2} V_{x}$ [$\partial_{x} \otimes \partial_{y} \otimes \partial_{y} \otimes \partial_{y} \otimes \partial_{y} \otimes \partial_{y} \otimes \partial_{y}$] Far from cylinder: $v_x \approx v_0 + \delta v_x$ $V_0 \partial_x \delta v_x + \delta v_y \partial_x v_x = v \partial_y^2 \delta v_x$ Explicit solution: $\delta v_x = \frac{e^{-y^2/4tvx/v_0}}{\sqrt{4\pi} \frac{v}{v_0} x} = \frac{e^{-y^2/4tvx/v_0}}{\sqrt{4\pi} \frac{v}{v_0} x}$ Explicit solution: $\delta v_x = \frac{e^{-y^2/4tvx/v_0}}{\sqrt{4\pi} \frac{v}{v_0} x} = \frac{e^{-y^$ Estimate drag force/unit length: $F_{x} = \frac{d}{dt} \left[x - mon entire carried = \int_{-\infty}^{\infty} dy \left[T_{xx}(x \to -\infty) - T_{xx}(x \to +\infty) \right]$ by fluid \(1 - \infty \) $= \rho \int_{-\infty}^{\infty} dy \left[v_o^2 - (v_o + \delta v)^2 \right] \approx 2\rho v_o \int_{-\infty}^{\infty} dy \, \delta v_x(y) = 2\rho v_o \tilde{C}$

Re-introduce drag coefficient (lec 14): CD

$$C_0 \sim \frac{F_2}{2\rho v_0^2 R} \quad SO \quad C_0 \sim \frac{C}{R} \quad V_0$$

Usually, we expect at $R \lesssim 1$ (laminar): $C_0 \sim \frac{1}{R} \times \frac{1}{\log R}$

$$F_2 \sim \frac{1}{2} \rho v_0^2 R \cdot \frac{1}{R}$$

What happens for turbulent flow? big background small pert. Weak turbulence approximation: $V_i = \sqrt{10^4} + \delta v_i (t, x)$

Expand Navier-Stokes in δv_i :

$$V_j \ni_i v_i + \frac{3i}{P} = v \ni_j \ni_j v_i$$

Ung in $\overline{v} + \delta v_j$ avg over statistical fluctuations... (take $\delta v_i = 0$)

Problem: equation for \overline{v} depends on δv_i^2 , \overline{v} depend an turbulent δv_i ...

Strategy #H: EOM for $\delta v_i \delta v_i ?$

$$\delta v_k \left[v_j \ni_j v_i + \frac{2iP}{P}\right] = \delta v_k v_j \partial_j v_i + (i \leftrightarrow k)$$

Solve for
$$\nabla$$
, $\int v_i \int v_j \partial v_j \partial v_j \partial v_j \partial v_j \partial v_j \partial v_k \partial v_j \partial v_j \partial v_k \partial v_k \partial v_j \partial$

Assume vessor... encoding multi-scale eddy dynamics into ve.

 $F_{x} = \int dy \ \rho \left[T_{xx}(x \rightarrow -\infty) - T_{xx}(x \rightarrow +\infty) \right] \approx \rho v_{o} \tilde{C} \sim \rho v_{o} \cdot w(x) \delta v_{o}(x)$ constant! -> "t

Estimate by dimensional analysis: 2 ~ voR. Cp

Comparing width of wake in laminar vs. turbulent $w \sim \sqrt{\frac{v_x}{v_o}} \sim \sqrt{c_o R_x}$ $v \sim \sqrt{\frac{v_x}{v_o}} \sim \sqrt{c_o R_x}$

Since R>1, turbulent wake much larger.

Entrainment = turbulent wake "sucks in" ambient fluid (of HW4)

Kolmogorov (1941)'s scaling theory for isotropic, driven turbulence

continuously stir

(a) large scales

A large scales

Statistical steady state = injected energy @ large scales ->
"flow" in k-space from small k -> large k.

let $u(k) = \int a^3 \dot{q} \delta(|\dot{q}| - k) \frac{1}{2} \langle \dot{v}(-\dot{q}) \dot{v}(\dot{q}) \rangle \sim \frac{k^2}{2} \rho |\delta \dot{v}(k)|_{typ}^2$

Dimensional analysis:

$$\left[u(k) \right] = \frac{1}{[L]^2} \cdot \frac{[M]}{[L]^3} \left[\int d^3x \, e^{-ikr} v \right]^2 = \frac{1}{[L]^2} \cdot \frac{[M]}{[L]^3} \cdot \left[L \right]^6 \cdot \frac{[L]^2}{[L]^2} \cdot \frac{[M]}{[L]^2} \cdot \frac{[M]}{[M]} \cdot \frac{[M]}{[$$

Postulate: $\frac{u(k)}{M} = \epsilon^{\alpha} k^{\beta}$ total mass $\epsilon = \frac{1}{M} \left(\frac{d\epsilon}{d\epsilon} \right)_{stirring}$

Over what range of length scales do eddies exist in a turbulent flows?

Define effective Reynolds number at scale k:

 $R(k) \sim \frac{k^{-1}v_{+y_0}(k)}{v} \in NOT$ Fourier trans

By dimensional analysis, $v_{typ}(k) \sim \left(\frac{\epsilon}{k}\right)^{1/3}$.

So $R(k) \sim \frac{\xi^{1/3}}{\nu} k^{-4/3}$

Initial flow has Reynolds Ro...

 $\frac{R_o}{l} \sim \frac{k_{min}}{k_{max}^{-9/3}}$ \rightarrow Largest \(R^{-3/4} \)