PHYS 7810 Hydrodynamics Spring 2024

Lecture 3

Time-reversal symmetry

January 23

Re cap: stochastic differential equation:

$$\frac{dx}{dt} = a(x,t) + b(x,t) \cdot 3(t)$$
Gaussian white noise:
$$\langle 3(t) \rangle = 0$$

$$\langle 3(t)$$

FPE $\frac{dx}{dt} = -8x + \sqrt{20} \text{ S(t)}$ $\frac{dx}{dt} = -8x + \sqrt{20} \text{ S(t)}$

$$\partial_t P = \partial_x (y \times P) + D \partial_x^2 P$$

What is P(x,t)? Suppose $P(x,0) = \delta(x-y)$.

Fourier from form to
$$\hat{P}(k, k)$$
:

 $2\xi\hat{P} = -yk \partial_k \hat{P} - bk^2\hat{P}$

Solved using method of characteristics:

 $\frac{dk}{dk} = +yk$
 $k(k) = k(0)e^{yk}$
 $k(k) = k(0)e^{yk}$

Contine:

 $e^{\hat{P}(k,k)} = -bk^2\hat{P}$
 e^{\hat

In general: "any stochastic system will have steady state: $2 + P_{SS}(x) = -\partial x(aP_{SS}) + \cdots = 0.$ $P_{SS} = e^{-\frac{\pi}{2}}$ $P_{SS} = e^{-\frac{\pi}{2}}$ $P_{SS} = e^{-\frac{\pi}{2}}$

Note: FPE are linear: P(x,t) solution $\lambda P(x,t)$.

(overall normalization not important) Example: re-do overdamped oscillator. xample: re-do overdamped oscillator.

Start by assuming steady state $P_{55} = e^{-\frac{\pi}{4}}$ $= e^{-\frac{1}{2} + x^2}$. The most general FPE: $2 + P = -\hat{W} P$...

Most general \hat{W} ?

Conserve probability: $\frac{d}{dt} \int dx P = 0 = -\int dx \hat{W} P$... $\hat{W} P = \partial_x (\hat{Y} P)$ if $P(\omega, t) = 0$, then $\sqrt[-\infty]{x} = \frac{1}{2} \sqrt[x]{x}$ 2 Stationarity: $\hat{\mathbb{W}}e^{-\bar{\mathbf{E}}}=0$. $(\bar{\partial}_{x}^{\dagger}+\partial_{x}\bar{\mathbf{E}})e^{-\bar{\mathbf{E}}}=0$. $(\bar{\partial}_{x}^{\dagger}+\partial_{x}\bar{\mathbf{E}})e^{-\bar{\mathbf{E}}}=0$. $(\bar{\partial}_{x}^{\dagger}+\partial_{x}\bar{\mathbf{E}})e^{-\bar{\mathbf{E}}}=0$. $(\bar{\partial}_{x}^{\dagger}+\partial_{x}\bar{\mathbf{E}})e^{-\bar{\mathbf{E}}}=0$. How d=1How do I obey both? $\hat{W} = -\vec{J}_{x} \hat{Q} (\vec{J}_{x} + \mu)$ where $\mu = 2x \pm 1$ In this example: $\mu = \frac{k}{T}x$. diffusion const. Simplest possible choice: QP = DP (D>0) noise variance>0. $- \tilde{W}P = \partial_{k}P = D\partial_{x}^{2}P + D\partial_{x}(\frac{k}{T}xP)$ obeys FOT! I+ ox(yxP) 1= D. #

Latter approach: philosophy of effective theory.

Vsually take "Q" to be const... # const.

nultiplicative noise: QP = Q(x)P

non- Gaussian noise: Q have dx

(FPE has > 3rd derivatives)

Latter approach: philosophy of effective theory.

Pronounced

Non- Markovian noise: PPE's w/ 22 +--
(not in class)

del = - Jds w(s) P(t-s)

Generalization to n degrees of freedom:

(1) given stationary state e - \(\Phi\) (usually \(\Phi\) = \(\beta\th)\)

(2) most general FPE: $\partial_{\xi}P = -\hat{\omega}P$ $\hat{\omega} = -\partial_{i}\hat{Q}_{ij}(\partial_{j} + \mu_{i})$ where $\mu_{i} = \partial_{i}\bar{\Xi}$. (i=1,...,n)

The operator Q is has to be positive semidefinite (noise variance not negative)

-> P(x, t->0) = Pss(x)

Note: above $\hat{W} = -\vec{j}_i(\hat{Q}_{ij}(\hat{J}_j + \hat{J}_j + \hat{J}_j))$ not in Ito prescription!

- With= - 7; (a;P)+ 2; 2; (QiiP)+...

```
So far: FPE seems to have an arran of time;
             P(x, t-100) = PSS(x)
                 (NOT -M)
Claim: this is a consequence of our <u>initial</u> tonditions!
Dissipative systems can have time-neversal symmetry...
only w/ stochastic noise!
Recall: P(x,0) = \delta(x-y). Then
          P(x,t)= (x) e - wit | y) = prob to go from y to x in offine) t.
If we watch "movie" of dynamics from y to x...
      can we tell arrow of time? are they equal?
          (x,0) \rightarrow (y,t):
           < y | e-wt | x> = < x | e-wt | y>
                                                      ATBT = (BA)T
                                                       マニーみず
          In general not same because:
                \hat{W} = -\partial_i Q_{ij}(\partial_j + \mu_j) \hat{W}^T = (\partial_i - \mu_j) Q_{ij} \partial_i

Ganssian
                                                Bad because:
  w is...
  -not stochastic process (not 2; (...))
[-steady state messed up WTe-$ +0].
```

let's try to fix! Define time-reversed Wrev = e-\$ WTe\$ (similarity transformation, multiplying by Pss) Claim: Wrev: . stochastic! · steady state unchanged! Drev= e-E DT e = e-E Qi-Ki) Qij die++ e e e e e | i.e. Wrev = -dj Qij (ditni) = - 2; Q; (2; + x;) wrev generates the time-reversed process. Why? <x|e-wt|y>= <yle-wt/x> e+更(y) (y | e-Wrent | x> e-更(x) stochastic process has T-symmetry if Define: wrev = w. Then obey detailed balance: (x/e-wt/y)e-E(x) = <yle-wt/x)e-E(x)

