
PHYS 7810: Hydrodynamics Spring 2026

Homework 1

Due: January 27 at 11:59 PM. Submit on Canvas.

Problem 1 (Time-reversal symmetry in the Langevin equation): In Lecture 4,15 we saw how time-reversal
symmetry (T) acts on the MSR Lagrangian

L = πiẋi + iπiMij(πj − iµj). (1)

For simplicity, assume that all xi are T-even, such that Mij = Mji when the above theory is T-symmetric.
Recall the path integral derivation of the MSR Lagrangian from Lecture 4, where we saw that (1) is

equivalent to the Lagrangian

L = πi (ẋi +Mijµj − biαξα) +
i

2
ξαξα (2)

where

Mij =
1

2
biαbjα. (3)

Find1 the transformation of ξα under time-reversal symmetry, given the known transformations of xi
and πi derived in Lecture 4, such that L in (2) transforms identically to (1) under time-reversal. Deduce
how time-reversal symmetry acts on a Langevin equation directly. Write a sentence or two summarizing
how your answer gives a very explicit resolution to the “arrow of time” puzzle in dissipative systems that
we raised in Lecture 1.

Problem 2 (Particle under random forcing): A15 non-relativistic particle of mass m undergoing random
forcing dynamics obeys the equations:

dx

dt
=

p

m
, (4a)

dp

dt
= α · ξ (4b)

where ξ is Gaussian white noise as in Lecture 1. Assume the initial conditions x(0) = p(0) = 0.
Formally integrate these equations to get a formula for x(t) in terms of integral(s) over ξ. Then

explicitly show by evaluating these integrals and using the known value of 〈ξ(s)ξ(s′)〉 (given in Lecture
1) that 〈

x(t)2
〉

=
α2

3m2
t3. (5)

Give a simple heuristic explanation for the scaling with t.

1Hint: The fastest way may just be trial and error.
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Problem 3 (Spinning galaxy): Consider an anisotropic rigid body with principal moments of inertia
I1 < I2 < I3 rotating in free space. In classical Hamiltonian mechanics, we can associate this dynamics
with a Hamiltonian system where

H =
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
(6)

and the Poisson brackets are

{L1, L2} = −L3, (7a)

{L2, L3} = −L1, (7b)

{L3, L1} = −L2. (7c)

A:10 Show that the Hamiltonian equations of motion L̇I = {LI , H} (I = 1, 2, 3) reproduce Euler’s equations
of motion for a freely rotating rigid body. Show also that the total angular momentum

L2 = L2
1 + L2

2 + L2
3 (8)

is a conserved quantity.

B:10 Now suppose that we wish to model the dissipative dynamics of our rotating body. Assume that the
dissipation does not relax total angular momentum L2, but it can relax energy. Write down an MSR
Lagrangian for this system: L = πI L̇I + · · · , assuming Φ = βH, and explaining the symmetry you
impose to mandate that L2 is conserved as you go. Deduce the noise-free dissipative equations for
the rigid body, and in this limit of neglecting noise, determine the late time state of the rigid body.
Explain your answer physically.

Although the model we wrote down is too simple because it neglects the internal dynamics of the object
which can change II , this is a cartoon model for why disk-like galaxies spin. In the galactic context
the “friction” in the model above is the conversion of kinetic energy from collective motion of stars into
relative motion.

Problem 4 (Rock paper scissors): Consider a theory with three degrees of freedom r, p and s, and a
set of stochastic equations governing their dynamics. The equations (e.g. Fokker-Planck equation) are
invariant under cyclic permutations of variables, such as r

p
s

→
 p

s
r

 (9)

Furthermore, impose a generalized time-reversal symmetry corresponding to r(t)
p(t)
s(t)

→
 r(−t)

s(−t)
p(−t)

 . (10)

A:15 Write down the most general expression for Φ consistent with these symmetries. Then, write down
the most general MSR Lagrangian with generalized time-reversal symmetry and Gaussian noise.

B:5 For any choice of parameters (and Φ), is the MSR theory you found above equivalent to ṙ
ṗ
ṡ

 = −α

 1 5 0
0 1 5
5 0 1

 r
p
s

+ noise? (11)

The details of noise are not important here; α > 0 is a constant. Explain your answer. If this is not
possible, how does the MSR formalism forbid such a theory?
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Problem 5 (Thermal bottlenecks): Consider a generic stochastic system for a single degree of freedom
x, with steady state Φ(x) = βH(x), where β = 1/T denotes inverse temperature. As in Lecture 3, write
the Fokker-Planck equation as

∂tP = −ŴP = ∂x (Q(x) (∂xP + P∂xΦ)) . (12)

Suppose that you could solve the eigenvalue problem

Ŵφn = λnφn. (13)

A:20 Explain why the problem necessarily has time-reversal symmetry. Then give a physical argument that
all λn ≥ 0, and explain why at least one λn must be 0. Deduce that if λn 6= λm,2∫

dx eΦ(x)φn(x)φm(x) = 0. (14)

Explain how you can then solve the time-dependent Fokker-Planck equation by expanding functions
in the eigenbasis φn.

B:10 Now let us consider a model where H(x) = H(−x) is symmetric and

H(0) = ∆+ min
x
H(x). (15)

Assume for simplicity that Q(x) = Q is a constant. Show that3 if the temperature T is sufficiently
small (how small is necessary?), there is a non-zero eigenvalue λ1 of Ŵ scaling as

λ1 ∼ e−∆/T . (16)

Explain the physical implications.

2Hint: Review from quantum mechanics why the eigenvectors of a Hermitian operator with distinct eigenvalues are
orthogonal, and generalize that argument, using time-reversal symmetry where necessary. In general, you may find reviewing
how you solve the time-dependent vs. time-independent Schrödinger equation helpful.

3Hint: Continue the analogy with quantum mechanics and make a variational principle. What is a clever trial function
to put into the variational principle?
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