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PHYS 7810: Hydrodynamics Spring 2026

Homework 2

Due: February 10 at 11:59 PM. Submit on Canvas.

Problem 1 (Charge screening): Consider a theory of charged particles living in d = 3 spatial dimensions,
that interact via long-range Coulomb interactions in vacuum, and are in thermal equilibrium. The total
charge is conserved under the dynamics.

A: Follow the MSR EFT' of Lecture 5 to deduce the long-wavelength dynamics of the charge. Argue
that (in Fourier space)
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where - - - denotes subleading terms you can neglect. Deduce the following “hydrodynamic” dispersion
relation for the conserved charge:
w=—i—, (2)
€0

where o is the conductivity (introduced in the MSR formalism as in Lecture 5).

B: It might seem inconsistent that charge is conserved and yet w does not vanish as £ — 0. To see what
is happening, it is instructive to build a “microscopic model” for the dynamics. Consider a spherically
symmetric distribution of charge, where

r
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is the total charge contained within radius r. Combine Gauss’ Law and the conservation law for
charge with the approximation J = oE to derive a differential equation for ¢(r,t). Solve it and
provide physical intuition: how your answer is consistent with A, as well as charge conservation.

Problem 2 (Sound poles): Consider the following simplified MSR Lagrangian from Lecture 7, describing
a one-dimensional fluid with only charge and momentum conservation in d = 1 dimension:

L =m,0ip + mg01g — afigOymy — afiy0,7g + 100 mg0x (g — iftg), (4)

o= [a [SXWM (5)

Here a, x, M, { are all constant. Follow the method developed in Lecture 6 and calculate the retarded
Green’s function (up to an overall scale) (g(—k, —w)my(k,w)). Are the poles in this Green’s function
consistent with the quasinormal modes you expect?

where the steady state

! Hint: What is the correct choice of @ for a system in thermal equilibrium? If charges interact with Coulomb interactions,
how can you most easily calculate their electrostatic potential energy? You will need to normalize the coefficient o with an
additional factor of temperature T, as was discussed in Lecture 7.
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Problem 3 (Angular momentum conservation): In Lecture 8 we argued that angular momentum con-
servation allowed us to assume the stress tensor was symmetric. In this problem we will revisit the nature
of angular momentum conservation in hydrodynamics more carefully, using the full power of the MSR
formalism.

A: For simplicity, assume that our fluid has momentum density g; and conserves the total momentum P;
and angular momentum L;; = —Lj; given by”

P, = /dd:c gi(x), (6a)
Lij = [ 4% nigy(w) — (). (6b)

If m; is the MSR~conjugate field to g;, find all possible invariant building blocks for an MSR Lagrangian
consistent with P; and L;; conservation. What can you conclude from this result about the stress tensor
Ti;, which we might define in general by

L:ﬂ'iatgi—aiﬂ'j‘ﬂj. (7)

B: If our fluid is made up out of spinning objects which themselves can carry “spin” angular momen-
tum, you might worry that our hydrodynamic description is incorrect because (6b) only includes
the “orbital” angular momentum. Let’s explore the implications of also accounting for spin angular
momentum. Modify

Ly = [ 4% 5ig;(0) — a:(a) + 535(0). )
where s;; = —sj; is the spin angular momentum density. Write down an MSR Lagrangian®
1
L =m0g; + §7Tij6t8@'j + - (9)

including all possible invariant terms under P; and L;; conservation, and assuming time-reversal
symmetry (for which g; = —g; and s;; — —s;;). Analyze the resulting quasinormal modes assuming

a b
¢ = /ddl‘ [2gigi + 45ij5ij:| (10)

for a,b > 0 and show that s;; decays at a finite rate even at arbitrarily long wavelengths. Conclude
that it is not a hydrodynamic mode: only momentum g; is a hydrodynamic mode. Explain physically
why this is happening even though angular momentum is also conserved.

2This formalism makes sense in general spatial dimensions. In d = 3 we can write angular momentum as a pseudovector
by writing L; = %éijijh
3The extra factor of 1/2 accounts for the antisymmetry of s and 7, and avoids double counting.
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Problem 4 (Boundary conditions for biased diffusion): In Lecture 6 we discussed the hydrodynamic
effective field theory for charge conservation in d = 1 with PT-symmetry:

where the charge current is
J =wvp— DOyp. (12)

You can assume that v > 0 and D > 0 are constants. In this problem, we will consider this system on a
finite size domain: 0 < x < L.

A: Suppose that we put periodic boundary conditions on the box, namely p(z,t) = p(x + L,t). Find a
general solution p(x,t) to the hydrodynamic equations in terms of a discrete set of quasinormal modes
in this finite domain. What is the late time steady-state? What is the time scale on which the system
reaches steady-state?

B: Suppose that instead the boundary conditions are that J(z = 0) = J(x = L) = 0 — this corresponds
to a box with impenetrable walls at the ends. Re-analyze the problem, finding the quasinormal modes
and the steady state.

C: In the finite box, suppose you are handed initial condition

p(2,0) = 5 (x - ’;) . (13)

Qualitatively describe what happens and in particular estimate the time it takes to reach equilibrium.
Argue that as L — oo this time scale is long compared to the decay rates of quasinormal modes from
B. Explain why this apparent discrepancy is possible.



