
quantum mechanics → approximation methods FFFF

Quantum Bouncing Ball

In this problem we consider the quantum dynamics of a “bouncing ball,” or a point mass of mass m with
quantum Hamiltonian

H =
p2

2m
+mgz.

Furthermore, we are restricted to the half-space z > 0 (i.e., the ball bounces off of the floor at z = 0).
Now, this problem is going to get a bit involved, and so right away we’re going to want to work in
dimensionless units.

(a) Explain how to scale position and energy from z → x and E → ε, respectively, so that the eigenvalue
equation becomes

d2ψ

dx2
= (x− ε)ψ.

(b) Use the WKB approximation estimate the eigenvalues ε for the above equation, with the appropriate
boundary conditions.

This is the classical example of a problem which can be solved very accurately by the WKB approximation.
In fact, however, there are still some surprises to the quantum bouncing ball! To get further, we’ll

want to understand a bit more about the exact solutions. These are called Airy functions, and they are
defined as the normalizable solution to the differential equation

d2

dx2
Ai(x) = x Ai(x).

It turns out one has the following integral representation:

Ai(x) =
1

π

∞∫
0

dt cos

(
xt+

t3

3

)
.

The zeroes of the Airy function can be denoted by −βn, where βn > 0 are discrete real numbers.

(c) What are the exact eigenvalues of the Hamiltonian? (You may still use dimensionless units.)

Our goal is now to look at the time-evolution of a “quasi-classical” state:

Ψ(x, 0) =

(
1

2πσ2

)1/4

e−(x−x0)
2/4σ2

.

with σ � x0. Define n0 ≡ min
n
|εn − z0| and T ≡ 2

√
x0. Note that the classical trajectory of this particle

would be1

zcl(t) =
2x0
3

+

∞∑
n=1

(−1)n
4x0
π2n2

cos
2πnt

T
.

1You do not need to find this explicitly. It is just an exercise in Fourier transforms.



Finally, you may find the following list of identities useful:

βn ≈
[

3π

2

(
n− 1

4

)]2/3
,

N2
n ≡

∞∫
0

dx Ai(x)2 ≈ π√
βn
,

0 =

∞∫
0

dx Ai(x− βn)Ai(x− βm) if m 6= n,

2NnNm(−1)n−m

(βn − βm)2
=

∞∫
0

dx xAi(x− βm)Ai(x− βn) if m 6= n,

2βnN
2
n

3
≈
∞∫
0

dx xAi(x− βn)2.

(d) Show that2

〈n|Ψ(t = 0)〉 =
Nn

(2πσ2)1/4
e−(βn−x0)

2/4σ2

[
1− x0 − βn

4σ4
+

(x0 − βn)3

24σ6

]
.

(e) Show that if n0 � 1 and |n− n0| � n0:

βn ≈ βn0 +
π√
βn0

(n− n0)−
π2

4β2n0

(n− n0)2.

(f) Ignore the quadratic term in the approximation of part (e). Show that then 〈z(t)〉 = zcl(t) by using
your previous results and the Airy function identities.

(g) Now include the effects of the quadratic term and let t = NT . Show that if NT 3/4π is close to an
odd integer, then the quantum bouncing ball will be almost exactly out of phase with the bouncing
oscillations of the classical ball.

2Begin by using the integral representation of the Airy function. Perform the Gaussian integral over x. Then perform an
approximate Gaussian integral over t, keeping only the lowest order term in t3.


