analysis \rightarrow optimization

Horse Race Gambling

At a horse race (the *very* old people version of sports), you place bets on various horses that are racing. If you bet money w_i on horse *i*, and horse *i* wins the race, then you will get $a_i w_i$ money back; otherwise, you get nothing. a_i is called the "odds" of horse *i*. We assume in this problem that $a_i > 1$.

Now, suppose we have a gambling addict betting on the horse race. He starts with money W_0 , and will bet a fraction f_i of his money on horse *i*. Assume that horse *i* wins the race at time *t* with probability p_i , which is independent of *t*. He will also simply not bet a fraction f_0 of his money. If we define $Z_{i,t} = \mathbb{I}(\text{horse } i \text{ wins race } t)$,¹ then given that the addict has money W_{t-1} going in to race *t*:

$$W_t = f_0 W_{t-1} + \sum_{i=1}^n a_i f_i W_{t-1} Z_{i,t}.$$

We have assumed that f_i does not change between races, for simplicity. Now, by taking the log of both sides, we find that

$$\log W_t = \log W_0 + \sum_{s=1}^t \log (f_0 + a_i f_i Z_{i,s}).$$

The law of large numbers from probability theory tells us that the sum over the logs converges to its average value in probability as $t \to \infty$, implying that

$$W_t \to W_0 \alpha^t$$

where

$$\alpha = \langle \log(f_0 + a_i f_i Z_{i,t}) \rangle.$$

If the gambling addict is smart, he will therefore try to maximize α . The optimal gambling strategy is constrained by the conditions that $f_0, f_i \ge 0$ and

$$\sum_{i=1}^{n} f_i + f_0 = 1.$$

(a) Using appropriate multipliers, write down the Kuhn-Tucker conditions for α .

(b) Discuss why the optimal choices of f_i are independent of time.

As you will show in this problem, the optimal strategy is greatly dependent on the value of the sum

$$\beta \equiv \sum_{i=1}^{n} \frac{1}{a_i}.$$

(c) Suppose that $\beta = 1$. Show that the optimal strategy is proportional gambling: $f_i \sim p_i$. Interestingly, this is independent of a_i .

¹This is a random variable which is 1 if horse *i* wins race *t*, and 0 if horse *i* does not win race *t*. The I is called an indicator function.

- (d) Suppose that $\beta < 1$. What is the optimal strategy?
- (e) When $\beta < 1$, there exists a strategy with zero risk in the following sense: with probability 1, the gambler will grow his wealth: $W_t > W_{t-1}$. Find such a strategy. Is it optimal?
- (f) Suppose that $\beta > 1$. Show that in this case, it is optimal to have $f_0 > 0$. While it is in general not easy to write down a closed form expression for f_i , describe the method one would use to find the optimal strategy. While you don't have to do this, it is certainly very easy to implement numerically.