Horse Race Gambling

At a horse race (the very old people version of sports), you place bets on various horses that are racing. If you bet money w_{i} on horse i, and horse i wins the race, then you will get $a_{i} w_{i}$ money back; otherwise, you get nothing. a_{i} is called the "odds" of horse i. We assume in this problem that $a_{i}>1$.

Now, suppose we have a gambling addict betting on the horse race. He starts with money W_{0}, and will bet a fraction f_{i} of his money on horse i. Assume that horse i wins the race at time t with probability p_{i}, which is independent of t. He will also simply not bet a fraction f_{0} of his money. If we define $Z_{i, t}=\mathbb{I}$ (horse i wins race $\left.t\right),{ }^{1}$ then given that the addict has money W_{t-1} going in to race t :

$$
W_{t}=f_{0} W_{t-1}+\sum_{i=1}^{n} a_{i} f_{i} W_{t-1} Z_{i, t} .
$$

We have assumed that f_{i} does not change between races, for simplicity. Now, by taking the log of both sides, we find that

$$
\log W_{t}=\log W_{0}+\sum_{s=1}^{t} \log \left(f_{0}+a_{i} f_{i} Z_{i, s}\right)
$$

The law of large numbers from probability theory tells us that the sum over the logs converges to its average value in probability as $t \rightarrow \infty$, implying that

$$
W_{t} \rightarrow W_{0} \alpha^{t},
$$

where

$$
\alpha=\left\langle\log \left(f_{0}+a_{i} f_{i} Z_{i, t}\right)\right\rangle .
$$

If the gambling addict is smart, he will therefore try to maximize α. The optimal gambling strategy is constrained by the conditions that $f_{0}, f_{i} \geq 0$ and

$$
\sum_{i=1}^{n} f_{i}+f_{0}=1
$$

(a) Using appropriate multipliers, write down the Kuhn-Tucker conditions for α.
(b) Discuss why the optimal choices of f_{i} are independent of time.

As you will show in this problem, the optimal strategy is greatly dependent on the value of the sum

$$
\beta \equiv \sum_{i=1}^{n} \frac{1}{a_{i}} .
$$

(c) Suppose that $\beta=1$. Show that the optimal strategy is proportional gambling: $f_{i} \sim p_{i}$. Interestingly, this is independent of a_{i}.

[^0](d) Suppose that $\beta<1$. What is the optimal strategy?
(e) When $\beta<1$, there exists a strategy with zero risk in the following sense: with probability 1 , the gambler will grow his wealth: $W_{t}>W_{t-1}$. Find such a strategy. Is it optimal?
(f) Suppose that $\beta>1$. Show that in this case, it is optimal to have $f_{0}>0$. While it is in general not easy to write down a closed form expression for f_{i}, describe the method one would use to find the optimal strategy. While you don't have to do this, it is certainly very easy to implement numerically.

[^0]: ${ }^{1}$ This is a random variable which is 1 if horse i wins race t, and 0 if horse i does not win race t. The \mathbb{I} is called an indicator function.

