Hyperbolic Geometry in the Disk

In this problem, we will explore hyperbolic geometry in disk \mathbb{D}. The pseudo-hyperbolic distance between two points $z_{1}, z_{2} \in \mathbb{D}$ is defined as

$$
D\left(z_{1}, z_{2}\right)=D\left(z_{2}, z_{1}\right)=\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right| .
$$

(a) Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic. Show that $D\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leq D\left(z_{1}, z_{2}\right)$. ${ }^{1}$
(b) Show that if $f \in \operatorname{Aut}(\mathbb{D})$, then $D\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)=D\left(z_{1}, z_{2}\right)$.
(c) Prove that

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

This is called the Schwarz-Pick Lemma.
Now let's get a bit more exotic. We formally define a hyperbolic metric on \mathbb{D}, given by

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} z \mathrm{~d} \bar{z}}{\left(1-|z|^{2}\right)^{2}}
$$

Note that the right hand side of the above equation is a positive real number, so we can "take the square root" of both sides to find the infinitesimal length, $\mathrm{d} s$, between two points very close to each other in the disk. Now, let's define

$$
\mathcal{C}\left(z_{1}, z_{2}\right)=\left\{\gamma(t) \text { smooth, } \gamma(t):[0,1] \rightarrow \mathbb{D}, \gamma(0)=z_{1}, \gamma(1)=z_{2}\right\} .
$$

(d) Given some trajectory $\gamma \in \mathcal{C}\left(z_{1}, z_{2}\right)$, explain why the distance between z_{1} and z_{2} along γ is given by ${ }^{2}$

$$
d[\gamma]=\int_{0}^{1} \frac{\left|\gamma^{\prime}(t)\right|}{1-|\gamma(t)|^{2}} \mathrm{~d} t .
$$

Because d_{γ} will usually depend on γ, we define the hyperbolic distance between z_{1} and z_{2} to be the smallest possible distance:

$$
d\left(z_{1}, z_{2}\right)=\inf _{\gamma \in \mathcal{C}\left(z_{1}, z_{2}\right)} d_{\gamma} .
$$

(e) Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic. Prove that $d\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leq d\left(z_{1}, z_{2}\right)$.
(f) Prove that, if $f \in \operatorname{Aut}(\mathbb{D})$, for any pair of points, $d\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)=d\left(z_{1}, z_{2}\right)$.

Now, let's find some expressions for hyperbolic distance!
(g) Let $s \in[0,1)$. Show that

$$
d(0, s)=\operatorname{arctanh}(s)=\frac{1}{2} \log \frac{1+s}{1-s} .
$$

(h) Generalize the above result to find $d\left(z_{1}, z_{2}\right)$ for any $z_{1}, z_{2} \in \mathbb{D} .^{3}$

[^0]
[^0]: ${ }^{1}$ Use automorphisms of \mathbb{D} to perform a conformal map so that $f(0) \rightarrow 0$. Then apply Schwarz' Lemma.
 ${ }^{2}$ To do this, note that the definition of a distance would be the integral of $\mathrm{d} s$ along a curve.
 ${ }^{3}$ Use the result of part (g), along with appropriate automorphisms of the disk.

