The Generator for Divisors

Let $d(n)$ be the number of divisors of $n \in \mathbb{N}$: i.e., the number of $k \in \mathbb{N}$ for which $\exists m \in \mathbb{N}$ such that $k m=n$. Define

$$
F(z)=\sum_{n=1}^{\infty} d(n) z^{n}
$$

(a) Verify that the radius of convergence of this series is 1 .
(b) Prove that

$$
F(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} .
$$

(c) Let $0<r<1$, and $p, q \in \mathbb{N}$. Show there is some constant $c_{p, q}$ for which

$$
\left|F\left(r \mathrm{e}^{2 \pi \mathrm{i} p / q}\right)\right| \geq c_{p, q} \cdot \frac{1}{1-r} \log \frac{1}{1-r}
$$

(d) Can $F(z)$ be analytically continued past the unit disk $\{|z|<1\}$?

