
differential equations → chaotic differential equations FFF

El Niño

In this problem, we will consider an extremely simple model for the formation of El Niño storms in the
Pacific Ocean, as a consequence of a chaotic interplay between ocean temperatures and currents.
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Let us consider the following toy model for the Pacific Ocean drawn above. The Pacific Ocean can
be approximated as having two layers: a cold deep ocean layer at temperature Td, which begins at a
rough height H below the surface of the ocean, and a warmer upper layer of thickness H with variable
temperature. The length of the ocean is L, and we make a temperature measurement of this upper layer:
Tw at the west end (e.g., Japan), and Te at the east end (e.g., California). When Te − Tw > 0, fluid
gets carried along the upper layer of the ocean from west to east, as shown in the diagram above. The
nonlinear interplay between the fluid flow, which is described by vector field v, and the temperatures will
lead to chaotic dynamics, as we argue in this problem.

We begin with a heuristic discussion of transport effects in the ocean.

(a) We can approximate the flow of water in the ocean as incompressible, which implies that ∇ · v = 0.
Use continuity to determine the relative scaling between vx and vz.

(b) Now, connect points ABC, and use a “finite difference approximation” to the transport equation of
temperature: ∂tT + v · ∇T = 0, to argue that the convective rate of change of temperature is given
by

Ṫw|convection =
vx
L

(Td − Te).

(c) Use a similar argument to determine Ṫe|convection.

We also want to account for diffusive thermal effects. We can crudely do this by simply adding a
linear decay term. However, since the surface of the ocean is affected by both the atmosphere and the
deep ocean, it may not relax to the deep water temperature Td, but a different temperature T0 instead.
We thus have

Ṫe|diffusive = −α(Te − T0),

Ṫw|diffusive = −α(Tw − T0).



Finally, we approximate that the dynamics of the scale of east-west ocean currents is given by

v̇x = −βvx +
γ

L
(Te − Tw).

for positive constants β and γ.

(d) Since temperatures only enter these equations in difference relations, let us choose to set Td = 0.
Define

σ =
Te + Tw

2
,

δ =
Te − Tw

2
.

Show that further rescalings of parameters and time, as well as combining the diffusive and convective
contributions to the changes in temperatures, lead to the equations

v̇x = aδ − bvx,
δ̇ = vxσ − δ,
σ̇ = 1− vxδ − σ.

Determine the dimensionless parameters a and b in terms of L, γ, α, β and T0, and discuss their
physical meaning.

(e) For the Pacific Ocean, where El Niño storms occur, we have L ≈ 8000 km. Crude estimates for the
remaining parameters are γ ≈ 2 m2 · s−2 ·K−1, α ≈ 7×10−8 s−1, β ≈ 2×10−7 s−1, and T0−Td ≈ 8 K.
Determine the relevant values of a and b for our model.

(f) Show that only when a > b do fixed points exist. Find these fixed points, when they exist.

(g) Show that the fixed points of part (f) become unstable when

a ≥ b3 + 4b

b− 2

(h) Perform numerical simulations of these equations, using the values of a and b you found in part (e).
Your simulations should suggest that this is a chaotic model. This chaotic dynamics in temperature
corresponds to our simple model of the formation of an El Niño storm!

(i) El Niño storms appear in the Pacific Ocean, but not in the Atlantic Ocean, which has a typical length
of about 4000 km. It is not clear what other parameters should vary significantly between these two
oceans. With this fact in mind, discuss the feasibility of this model.


