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Thomson’s Principle

For many complicated systems of real interest, it is extremely hard to calculate quantities of interest
exactly, and we must instead find ways to approximate them. In this problem, we will prove and put
to use a very powerful technique for estimating the effective resistance of a very large circuit, known as
Thomson’s principle.

Before discussing this technique, let us describe an arbitrary circuit of resistors in terms of a mathe-
matical object called a graph. A graph consists of a set of points (nodes) {u1, . . . , un} and a set of edges
which connect two points: e.g., the edge (u1u2) connects the points u1 and u2. For our purposes, we will
set (u2u1) = (u1u2). A graph is a lot like a circuit: each node in the circuit where 2 different wires connect
is a node in the graph, and each edge between nodes is a resistor. Of course, that does not completely
specify things: to describe the circuit, we must also provide a function Ruv for every edge in the graph
which describes the resistance.
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Given a graph with resistances as above, and the nodes a and b, we define a flow from a and b to be
any function of two nodes Juv with the properties that Juv = −Jvu and Jwx = 0 if (wx) is not an edge of
the graph. Furthermore, we demand that

∑
v∼u

Juv =


1 u = a
−1 u = b
0 otherwise

.

In the sum above, the notation v ∼ umeans all nodes in the graph with (uv) an existing edge (alternatively,
all nodes such that u and v are connected by a resistor). We see immediately that the current, Iuv, flowing
down an edge, is precisely an example of a flow, in the case that we have connected a voltage source between
a and b.

Thomson’s principle states that the power function

PT[Juv] ≡
∑
edges

J2
uvRuv,

when restricted to flows Juv as defined above, has a unique minimum, that the unique minimum corre-
sponds to the physical flow between a and b of unit current, and that this minimum of PT is precisely the
effective resistance Reff between a and b. We begin by proving this theorem.

(a) Begin by showing that PT = Reff if the flow function Juv = Iuv, where I is the true, physical current
which would pass through the system, subject to the constraints of the theorem.



(b) Consider any set of edges (u1u2), (u2u3), . . . , (unu1) which forms a loop.1 Define the function

Kxy ≡


1 xy = ujuj+1

−1 xy = ujuj−1

0 otherwise
.

Show that I + εK is a flow function for any ε, and that PT[I + εK] > Reff if ε 6= 0. Explain why this
completes the proof.

(c) Having seen and given the mathematical proof of the theorem, justify it on physical grounds.

Now, we use Thomson’s principle as follows. We guess a reasonable function Juv obeying the proper
constraints. Then, we try and find a reasonable bound for Reff by computing PT[Juv] ≥ Reff . However,
Thomson’s principle can only find us upper bounds to Reff . A slight modification will allow us to obtain
lower bounds as well. Let us define a cutset between a and b to be a subset of the edges (resistors) such
that any path between a and b must pass through a resistor of the cutset.

(d) Let A be a cutset of the edges. Explain why∑
uv∈A

|Iuv| ≥ 1.

(e) Let A1, . . . , Ak be disjoint cutlets (no 2 cutlets share an edge). Use the Cauchy-Schwarz inequality
to show that

Reff ≥
k∑

i=1

 ∑
uv∈Ai

1

Ruv

−1

We’re now ready to look at a hard circuit. Consider a 2 dimensional square grid of resistors, with
N resistors with in each dimension. Each resistor has resistance Ruv = r0. The question is what is Reff

between opposite corners of the square:

a

b

This problem is extremely hard to exactly solve, but we will determine how Reff will scale with N when
N is large using Thomson’s principle.

(f) Let’s begin with the upper bound. A guess for the flow, inspired by an analogy to probability theory,
is the following: the flow is always positive in the upwards or rightwards direction, and the sum of all
incoming flows into point v is equal to (n+ 1)−1, where n is the minimum number of steps that one
must take to get from v to either a or b, whichever is smaller. Verify that this is a valid J , and show
that

Reff ≤ c1r0 logN.

and estimate the constant c1. Note that you should not need to precisely determine the flow along
every edge: use approximations to simplify the calculation!

1Mathematicians call this a cycle.



(g) Now we turn to the lower bound. Using cutsets A1, . . . , An as described in the picture below:

...

· · ·
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A2

a

show that
Reff ≥ c2r0 logN

and estimate c2.

Thus, without finding an exact answer, we have shown that Reff ∼ r0 logN for the square. Note that Reff

scales very slowly with N , due to the large number of available paths for the current to take. In addition,
the reason why it scales as logN should be clear from the physical intuition gained from the flows/cutsets
we used to bound Reff .

(h) As a final challenge with Thomson’s principle, show that Reff for the d dimensional hypercube with N
resistors on each side (the d = 2 version was the square above) is bounded by a constant, independent
of N , as long as d ≥ 3.


