Population Growth with Aging

Let us consider a population described by $n(t, a)$, where n is the population density in age a at time t. If we measure a and t in the same units of time, then we have

$$
\frac{\partial n(t, a)}{\partial t}+\frac{\partial n(t, a)}{\partial a}=-r(a) n(t, a)
$$

where $r(a)$ is an age dependent death rate. The boundary conditions for this PDE, which is defined on $\mathbb{R}^{+} \times \mathbb{R}^{+}$, are given by $n(0, a)=n_{0}(a)$ and

$$
n(t, 0)=\int_{0}^{\infty} \mathrm{d} a b(a) n(t, a)
$$

Thus, the rate of birth of new individuals depends on the age distribution at time t.
(a) Show that the solution $n(t, a)$ has a solution given by, for a function $R(a)$ which you are to determine,

$$
n(t, a)= \begin{cases}n_{0}(0, a-t) \mathrm{e}^{R(a-t)-R(a)} & a>t \\ \int_{0}^{\infty} \mathrm{d} a^{\prime} b\left(a^{\prime}\right) n\left(t-a, a^{\prime}\right) \mathrm{e}^{-R(a)} & a<t\end{cases}
$$

Unfortunately, since this is a recursive relation, it does not count as an exact solution.
(b) In general, we do not necessarily care about the precise $n(t, a)$ - rather, we are interested in the dominant $t \rightarrow \infty$ behavior. Let us assume, for now, that the solution is of the form

$$
n(t, a) \rightarrow \mathrm{e}^{\gamma t} n_{\infty}(a) \quad(t \rightarrow \infty)
$$

Show that

$$
n_{\infty}(a)=n_{\infty}(0)=\mathrm{e}^{-R(a)-\gamma a} .
$$

(c) Use the boundary condition at $a=0$ to relate γ to $R(a)$ and $b(a)$.
(d) Show that the simple case of

$$
\begin{aligned}
& r(a)=\rho \\
& b(a)=\frac{\beta}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(a-\mu)^{2}}{2 \sigma^{2}}\right]
\end{aligned}
$$

has an exact expression for γ, in the limit of $\mu \gg \sigma>0$. Find it and comment on any interesting features, in terms of the biology.
(e) Write and show some numerical code to find a numerical solution to this PDE, in whatever language you'd like.
(f) Using the numerics to simulate the case solved in part 4, discuss whether you think the similarity solution was a good approximation. In doing this, you should consider the effects (if any) of the initial condition.
(g) Let's try and simulate a more realistic choice of $r(a)$ (the b is probably a decent approximation). Consider the choice

$$
r(a)=\lambda \mathrm{e}^{a / \alpha} .
$$

Discuss what you find numerically happens as you tune $\lambda, \beta, \alpha, \mu$ and σ. Do you expect that only certain ratios of these quantities are relevant? Try and say a bit theoretically, but you don't need to do any serious calculations. Can you find any interesting phenomena?

